

Professional Social Network as a Media for Innovation Spreading

Igor Kanovsky

Rome, 06-09/09/2017

Deep shift in modern life: the cost to publish information accessible to everyone in the world is

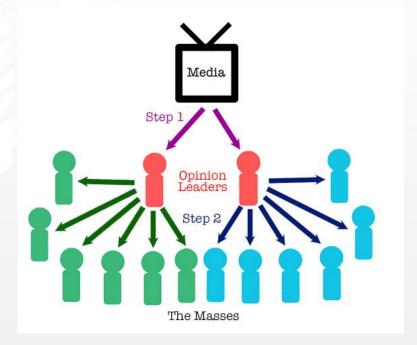
zero

Professional Social Network

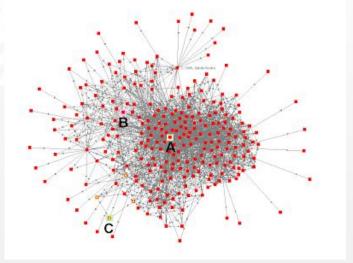
Way to accept innovation: one has to be informed about, to be interested in and to promote it.

Media for innovation spreading?

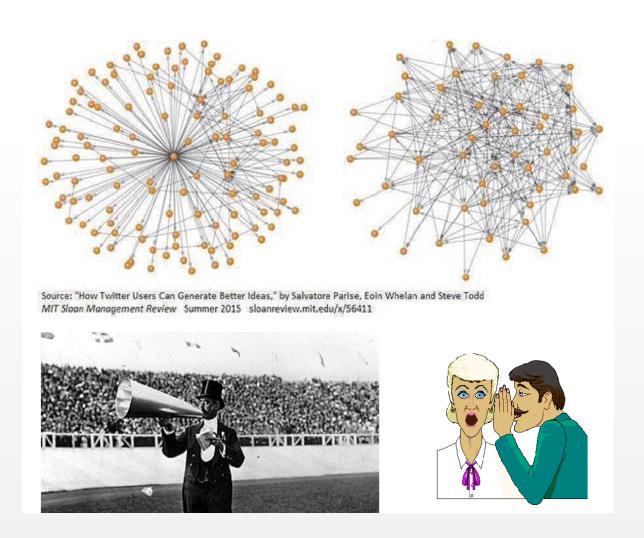
Innovation Leader


- A person with significantly bigger than median probability to have his idea been accepted by almost whole network.
- Leader: person property vs. network property.
- To reach neighbors of neighbors it has to be or an idea property or a **network** one.

Opinion leader ??


 Sociology observation – EXISTS. Starting from two-step flow of communication. Katz & Lazarsfeld (1955)

Opinion leader ??



- Networks observation (based on contagion model) – DOES NOT EXIST. Network "stars" are not influencers! Watts & Dodds (2007).
- Contagion model: information spreads as contagion disease, in contact exists probability to be "infected" by idea.

Who is a leader?

Different spreading entities

- Why something spreads over network?
- It is an actual one. Example: unexpected result of a football match. It is an attractive one. Example: charming cat video.
 Model: contagion.
- 2. It is part of social behavior. Example: obesity, used to smoke. Model: threshold (complex contagion)
- 3. It was started by opinion leader. Example: diffusion of innovation. Model: 0-1-2

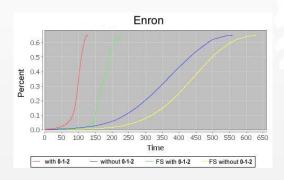
0-1-2 Effect

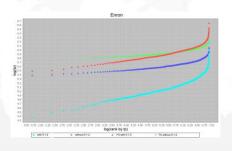
- "The probability of joining an activity when two friends has done so is significantly more than the twice of the probability of joining when only one has done so." [Jon Kleinberg].
- J. Kleinberg.(2008) <u>The convergence of social and technological networks.</u> Communications of the ACM, 51(11):66-72, 2008.

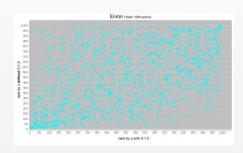
0-1-2 Model

- Two different probability:
 - $-P_1$: if a person is encountered with one "infector".
 - $-P_2$: if a person is encountered with two "infectors".
- p₁ << p₂
- The Model:
 - In each time interval for each not opinioned actor in the network we randomly select two of his friends:
 - If the two selected friends are not opinioned the actor stay not opinioned.
 - If one is opinioned- the actor gets the opinion in p_1 probability.
 - If two are opinioned- the actor gets the opinion in p_2 probability.

Quantifying




- Measure of the leadership: probability to start innovation spreading p_{start} .
- If a one is a leader his p_{start} has to be significantly bigger in comparison to others.
- Tipping point t_p is a time period from start of spreading to "explosion" of innovation.
- t_p is approximately time for innovation to reach 10% of SN actors.
- $p_{\text{start}} \sim \exp(-t_p/t_0)$


Simulations

- We simulated innovation spreading on different real world social networks.
- The networks have a Small World property (big number of triangles) and power law degree distribution.

Conclusion

- Innovation leader is a network structure property.
- For innovation leaders existing Small World property is essential.
- Innovation leaders have big number of "friends", but in contrast to "stars" their "friends" are "friends" to each other.

Thank you.

igork@yvc.ac.il http://ik.yvc.ac.il @igorkan