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• Evolution, innovation, discovery and novelty are processes of 
high social, intellectual and practical importance.

• Novelty dynamics is enhanced by the explosion of publications, 
indexing, availability of documents, and one is feed-back for 
the other.

• This situation rapidly opened opportunities for developing the 
science of sciences, the quantitative understanding of the 
processes of building novelty, and of models for emergency of 
innovations, etc.
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During these developments some specific questions recurrently 
occurred:  

1. Is there a common scale invariant dynamics of discovery for 
various systems or sciences?

2. Can practice and success receipts be shared between different 
communities?
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Also, during these processes some ides and principles start to crystalize:

1. For a system with boundary, each innovation “expands” or changes the 
boundary towards new types of future possibilities. The innovation can 
even change the very structure of the system’s space. In that, the 
“surrounding” space of unexplored possibilities for a system (the 
adjacent possible) is changed continuously [Kauffman, Tria, Loreto, 
Servedio, Strogatz, Buchanan, Castellano, Fortunato, et al]

2. Topological transitions in systems’ large scale structure of interaction 
(critical exponents, percolation). Self-similarity near critical point. 
[Bettencourt, Kaiser, Castillo-Chavez, Vojick, Kaur, et al]
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3. There are hierarchies of creativity: novelty, innovation, etc.

4. One cannot take the   lim
𝑵→∞

limit, the systems are always finite, so statistical 

methods may be questionable.

5. Everything changes: size, number of constituents, boundary, space dimension, etc.

6. Nevertheless, systems that might have quite different local laws and dynamics 
behave similarly and self-similarly near a phase transition, via scaling.

7. There are triggering events, epidemics, long range interactions.

8. In spite of good dynamical similarity between a number of different systems, there 
are always other systems that have a different dynamics 
(publications=epidemics≠patents).

9. How constraints are built, and how new sources of free energy are detected?

10. How to select the useless accidents which will generate the future adjacent?
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Geometric Boundary Approach
1. Identify mechanisms to generate boundary (interaction between constituents like in water 

surface, holographic principle, synchronization in molecular motors axonemal swimming)
2. What types of boundary?
3. What types of change of boundary: intrinsic (shape), extrinsic (creation, change of 

dimension, change of topological properties).
4. The interplay between individual and surface.
5. Collective modes induced by surface. Can semantic be induced by boundary?

Obvious examples of systems where boundary is very important
1. Cell biology. Thermodynamic work to build the membrane, which in turn manipulates constraints on 

reactions, hence on constructing constraints that manipulate constraints
2. Heavy nuclei, neutron stars, supernovae core
3. Holographic principle in cosmology
4. Phase transition, criticality, self-similarity

Less obvious examples of systems where boundary is very important
1. The shape of internet (from the dynamics of interest and need of information)
2. Society
3. Cities
4. Invention patents
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Engine of this study: The adjacent possible theory and the combinatorial (urn-like 
based) models for novelties:

1. Geometry from graphs-networks: random walk on a growing graph whose 
structure is self-consistently shaped by the innovation process.

2. The notion of advance into the adjacent possible sets its own natural limits on 
innovations, since it implies that innovations too far ahead of their time, i.e., not 
adjacent to the current reality, cannot take hold. Careful where to set the boundary.

3. The fact that one observes the same statistical signatures for novelties and 
innovations strengthens the hypothesis that they could be manifestations of 
correlations generated by the expansion of the adjacent possible.

4. Showing an interesting dependence between the occurrence of novelty and the 
structure of boundaries of various spaces and adjacent possible structures. 
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Spinal cord
Internet model

2015 Broder, Kumar, Maghoul, Raghavan, 
Rajagopalaon, Stata, Tomkins, Wiener,

32 × 106



Questions:

1. How is the mathematics behind the dynamics of novelty? Can future of inventions
and novelty, etc. can be really mathematically modeled?

2. If yes, do we use the present math tools, or may be a different approach would 
help even more?

3. Discovery is modeled: statistics, combinatorics, graphs/networks, criticality and 
percolation tools.

4. A smoother geometric approach may also help.

1. Introduction 2.Geometry 3. Dynamic order  4. Cat’s Math 5. Applications



𝟎
𝒄𝒎𝒂𝒙(𝒕)𝒏 𝒄, 𝒕 𝒅𝒄

∝
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A view on the urn model w. triggering ( 2017, Loreto, 
Servedio, Strogatz, Tria)
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Manifolds, simplexes and homology

M is n-dimensional differential manifold

K is its n-dimensional simplicial complex containing p-simplexes 𝝈𝒑of dimension 0…n 
(triangulation of M)

𝑪𝒑(𝑲) is the free abelian group generated by the oriented p-simplexes of K

𝒄𝒑 = σ
𝒍=𝟏

𝒍𝒑 𝒇𝒍 𝝈𝒍
𝒑, 𝒇𝒍 ∈ 𝒁

Boundary operator maps chains into smaller dimension chains

𝝏𝒑: 𝑪𝒑(𝑲) 𝑪𝒑−𝟏(𝑲),        by                            𝝏𝒑 𝒗𝟎, … , 𝒗𝒑 = σ𝒋=𝟎
𝒑

−𝟏 𝒋 𝒗𝟎, … , ෝ𝒗𝒋… , , 𝒗𝒑

Major theorem: 𝝏𝒑−𝟏° 𝝏𝒑= 0    Boundary of a boundary is null.
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In the following, by abuse of language, we write:  K           M

is the group of p-dimensional cycles 𝒛𝒑 in                   such that 𝝏𝒛𝒑 = 𝟎 , that is the kernel of 𝝏.

is the group of p-boundaries, 𝒃𝒑 in                   such that 𝒃𝒑 = 𝝏𝑪𝒑+𝟏

is the p-dimensional homology (quotient) group of M.

Homology  is independent of the triangulation K.

Examples: The homology measures “how many holes and of what types has M”

𝑯𝒑 𝑺𝒏; 𝑹 = 𝒁 if 𝒑 = 𝟎, 𝒏 and = {𝟎} otherwise.

𝑯𝒑 𝑻𝟐; 𝑹 = 𝒁 if 𝒑 = 𝟎, 𝟐 it is = 𝒁𝟐 if 𝐩 = 𝟏 and  = {𝟎} if p>3.

𝐻𝑝 𝑀;𝑹 = 𝑍𝑝 𝑀 /𝐵𝑝 𝑀

𝑍𝑝 𝑀

𝐵𝑝 𝑀 𝐶𝑝 𝑀

𝐶𝑝 𝑀
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K M
𝜎𝑖

𝜆𝑖 𝑪 = 𝝀𝒊(𝝈𝒊)

𝜆𝑖
∗

𝜴𝝀𝒊
∗𝝎

න𝜔 =

C



𝑖=1

𝑘

𝑎𝑖න𝜆𝑖
∗𝜔

∆𝑝

𝐶 =

𝑖=1

𝑘

𝑎𝑖𝜆𝑖with

de Rham Theorem in H. Whitney, Geometric Integration Theory (Princeton Univ. Press 1957)



Fundamental relation between space dimension and order of 
differentiation  

𝝏𝒑−𝟏 𝝏𝒑+𝟐𝝏𝒑+𝟏𝝏𝒑
𝑪𝒑−𝟏

𝜴𝒑−𝟏

𝑪𝒑+𝟏𝑪𝒑

𝐻𝑝 𝑀;𝑹 = 𝑍𝑝 𝑀 /𝐵𝑝 𝑀 = ker 𝜕𝑝 / im𝜕𝑝+1

𝒅𝒑−𝟏 𝒅𝒑+𝟐𝒅𝒑+𝟏𝒅𝒑
𝜴𝒑

𝜴𝒑+𝟏

𝐻𝑝 𝑀;𝑹 = 𝑍𝑝 𝑀 /𝐵𝑝 𝑀 = ker 𝑑𝑝+1 / im𝑑𝑝

dual

Cohomology

Homology
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Cohomology involves Stokes formula:

න𝒅𝝎 = න𝝎

M 𝝏𝑴

1. Introduction 2.Geometry 3. Dynamic order  4. Cat’s Math 5. Applications

ම𝑑𝑖𝑣 𝑉 𝑑𝑣 = 𝑉 ∙ 𝑑 Ԧ𝑆

𝑀 𝜕𝑀

For example:



Present Stokes formula as an equation:
Given an m-dimensional manifold M, find a sub-manifold B of M of 
dimension m-1 such that for all m-1 forms 𝝎 on M we have:

න𝒅𝝎 = න𝝎

If a solution exists and it’s unique, B is the boundary of M, if it is not 
unique, and there exist q solutions, B is an elementary a cobordism of 
index q.

M B=?
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It involves power
laws

Stokes-Green
understood as equation

for boundary

Calculate volumes,
areas of boundaries
(trivial n-dim case)

Add the criticality,
percolation, topological  

transition ingredient: fractal
geometry

Boundary
generator

Fractional
calculus 
(natural)

Variable/Dynamical
order of

differentiation

It gives dynamics, 
equations, matches 

experiments and 
other models



𝜕𝑛𝑥

𝜕𝑡𝑛

t

n

x(t)

A model for occurrence 
of novelty in spaces of 
variable dimension by 
using the theory of time 
variable order of 
differentiation. 

Equally, a natural frame 
for memory effects 
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𝜕𝑛𝑥

𝜕𝑡𝑛
𝜕∝𝑥

𝜕𝑡∝
𝜕∝(𝑡)𝑥

𝜕𝑡∝(𝑡)

𝒁 𝑹 𝑪∞

𝜕𝑞1𝑞2
𝜕𝑡𝑞1

H(𝑞1, 𝑞2, 𝑝1, 𝑝2)

Beyond fractional
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𝜕𝑡𝑥

𝜕𝑡𝑡

So how about this challenge:
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Examples of complex systems with time evolution from life and 

social systems to invention patents:

• Von Foerster (1960,) the Doomsday equation.

• Sergey Kapitsa (1965): 𝑁 = 𝐶 cot−1
𝑡0−𝑡

𝑇

• Hyperbolic growth models for population

• Life is the most complex diversity 

spanning 21 orders of magnitude

in size, obeying some empirical

power laws (mass vs. metabolic

rate, lifespan vs. heart rate, ¾ law, 

allometry, etc.)

• Gurevich and Varfolomeyev (2001):

double exponential law for population

growth: 

𝑁 𝑡 = 375.6 ∙ 1.001851.0073
𝑡−1000

with t in million years



It appears that in real world the rapid growth is a transition from exponential and 
criticality

Many dynamical laws have exponential behavior over the long range, but critical 
phenomena are always faster in the neighborhood of the critical point 
(hyperbolic laws):

𝑥𝑛

1

2 − 𝑥

𝑒𝑥
𝑛

𝑒𝑥𝒆𝒆
𝒙
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𝑦′ = 𝑦∝0,  y(0) = 𝑦0, ∃𝑀 > 0, ∀𝑡 ∈ 𝐈 ⊂ 𝐑, |y(t)|<M

Constant exponent approximation

∝0=0.4

∝0=0.8

∝0=1.6

∝0=2.3Gluing solutions for different 

t

𝑦 𝑡, ∝0 = ∝0 −1
𝑦0

1−∝0

∝0 −1
− 𝑡

1
1−∝0

It always has a singularity if ∝0> 1 at t =
∝0−1

𝑦0
1−∝0

𝑦 𝑡, 1 = 𝑦0𝑒
𝑡

∝0



A way to change the dynamics:

• Dynamic order of differentiation (DODE)

• Advantages:
▪ It keeps linearity (stability, linear spectral methods).

▪ Some physical systems appear to follow such behavior 
(hydrodynamic drag, exploding wire, chaos, fractals, Levy motion, 
memory-dependent, porous flow, anomalous diffusion, Brownian 
systems, causal telegraph equation, battery recharging cycles, etc.)

▪ Topological changes can occur when changing # of dimensions of 
space.

▪ Contains memory, nonlocal and nonlinear effects.
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Higher order derivatives, finite difference and history dependence

𝑦(𝑛) = lim
ℎ→0

σ𝑘=0
𝑛 −1 𝑘 𝑛

𝑘
𝑦(𝑥 − 𝑘ℎ)

ℎ𝑛
Backward nth order finite difference



Finite difference equations of 
different orders:

• 1st order
• 4th order

Constant order finite differences 
are linearly history dependent 

• Variable (increasing) order: 
the dynamics is also history 
dependent, but the amount 
of time taken into account 
from the past increases.

Example: human civilization has three types of memory genetic, neuronal, and external,

involving different history ranges dependence and different scales in time. 
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A possibility to implement such equations would be fractional derivative ODE

𝐷𝑒𝑎𝑥 =
𝑑

𝑑𝑥
𝑒𝑎𝑥 = 𝑎𝑒𝑎𝑥 𝐷𝑛𝑒𝑎𝑥=𝑎𝑛𝑒𝑎𝑥

𝐷1/2𝑒𝑎𝑥=𝑎1/2𝑒𝑎𝑥 ?

so

𝐷∝𝑒𝑎𝑥=𝑎∝𝑒𝑎𝑥 ? for ∝ ∈ 𝑸,𝑹,…𝑪

𝑒𝑎𝑥 = 𝐷𝐷−1𝑒𝑎𝑥

The meaning of integer order of differentiation:

𝑒𝑎𝑥 = 𝐷
1

𝑎
𝑒𝑎𝑥

→ 𝐷−1𝑒𝑎𝑥 = න𝑒𝑎𝑥 𝑑𝑥 in a formal way.
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Generalizing:

𝐷−2𝑒𝑎𝑥 =ඵ𝑒𝑎𝑥 𝑑𝑥 , … 𝐷−𝑛𝑒𝑎𝑥 =ඵ…න𝑒𝑎𝑥 𝑑𝑥

n-th iterated integral

If we generalize to rational number, we have technical questions:

1. Is this operator linear?
2. Does it obey composition law (closed)?
3. Is it correct to use antiderivatives?
4. What classes of functions can be fractionally differentiated like that?
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There are problems:

𝐷𝑛𝑥𝑝 =
𝑝!

𝑝 − 𝑛 !
𝑥𝑝−𝑛

𝐷∝𝑥𝑝 =
Γ(𝑝 + 1)

Γ 𝑝 −∝ +1
𝑥𝑝−∝

More actions:

𝐷∝𝑒𝑥

𝑒𝑥

𝐷∝ 

𝑛=0

∞
𝑥𝑛

𝑛!
= 

𝑛=0

∞
Γ 𝑛 + 1 𝑥𝑛−∝

Γ 𝑛 −∝ +1 𝑛!

∝(unless      ∈ 𝒁 )



This defect can be repaired by using geometrical insight for fractional derivative:

𝐷−1𝑓(𝑥) = න𝑓(𝑥) 𝑑𝑥 න
0

𝑥

𝑓 𝑡 𝑑𝑡

𝐷−2𝑓(𝑥) = ඵ

0 0

𝑥 𝑡2

𝑓 𝑡1 𝑑𝑡1 𝑑𝑡2

𝑡2

𝑡1

𝑡2 =x

𝑡2

𝑡1

𝑡2 =x

𝐷−2𝑓(𝑥) = ඵ

0 𝑡1

𝑥 𝑥

𝑓 𝑡1 𝑑𝑡1 𝑑𝑡2

= ඵ

0 𝑡1

𝑥 𝑥

𝑓 𝑡1 𝑑𝑡2 𝑑𝑡1 = න
0

𝑥

(𝑥 − 𝑡1)𝑓 𝑡1 𝑑𝑡1



Now we can define: 𝐷−2𝑓(𝑥) = න
0

𝑥

(𝑥 − 𝑡)𝑓 𝑡 𝑑𝑡

and in general:

𝐷−𝑛𝑓 𝑥 =
1

𝑛 − 1 !
න
0

𝑥

𝑓 𝑡 (𝑥 − 𝑡)𝑛−1𝑑𝑡

and even more general: the fractional integral

𝐷∝𝑓 𝑥 =
1

Γ −∝
න
0

𝑥 𝑓 𝑡 𝑑𝑡

(𝑥 − 𝑡)∝+1
, ∝< −1

The fractional derivative is introduced by ∝∈ 0,1 :

𝐷∝𝑓 𝑥 =𝐷∝−𝑚𝐷𝑚𝑓 𝑥 =𝐷∝−𝑚 𝑑𝑚

𝑑𝑥𝑚
𝑓 𝑥 , 𝑚 ≥ 1, ∝ −𝑚 < −1
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One possible definition is the Liouville-Riemann fractional derivative:

𝑏𝐷
∝
𝑥
𝑓 𝑥 =

𝑑

𝑑𝑥

1

Γ 1 −∝
න
𝑏

𝑥 𝑓 𝑡 𝑑𝑡

𝑥 − 𝑡 ∝ ∝ 𝜖(0,1)

We also have the Caputo fractional derivative:

𝑏𝐷
∝
𝑥
𝑓 𝑥 =

1

Γ 1 −∝
න
𝑏

𝑥 𝑓′ 𝑡 𝑑𝑡

𝑥 − 𝑡 ∝ ∝ 𝜖(0,1)
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How it works:

𝑓 𝑥 = 𝑥3

𝑓′ 𝑥 = 3 𝑥2

𝐷∝𝑓 𝑥
∝=
0.00
0.05
0.10
0.25
0.50
0.75
0.90
.999999
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Let us start with the following example:

𝑑∝(𝑡)

𝑑𝑡∝(𝑡)
𝑓 + 𝜀

𝑑

𝑑𝑡
𝑓 = 𝑎𝑓 with 𝑡 ∈ 𝐼 = 0, 𝑇 , 𝑎 ∈ 𝑅,

0 < 𝜀 ≪ 1, 𝛼(𝑡) ∈ 𝐿1 𝐼 → 0,1
𝑓(0) ≠ 0

We use for the variable order of differentiation a Riemann-Caputo 

fractional derivative of order ∝ (𝑡), that is the 0𝐷
∝(𝑡)

𝑡

𝑑

𝑑𝑡

1

Γ 1 −∝ (𝑡)
න
0

𝑡 𝑓 𝑠 − 𝑓(0)

𝑡 − 𝑠 ∝(𝑡)
𝑑𝑡 + 𝜀

𝑑

𝑑𝑡
𝑓 = 𝑎𝑓



1

Γ 1 −∝ (𝑡)
න
0

𝑡 𝑓 𝑠 − 𝑓(0)

𝑡 − 𝑠 ∝(𝑡)
𝑑𝑡 + 𝜀𝑓 =

We integrate this equation once with respect to t:

𝑎න
0

𝑡

𝑓 𝑠 𝑑𝑠 + 𝐶

න
0

𝑡 1

𝑡 − 𝑠 ∝(𝑡)
− 𝑎Γ(1 −∝ (𝑡)) 𝑓 𝑠 𝑑𝑠 = 𝑓(0)න

0

𝑡 𝑑𝑠

𝑡 − 𝑠 ∝(𝑡)
+ 𝐶Γ(1 −∝ (𝑡))

−𝜀 Γ(1 −∝ (𝑡)) f(t)

න
0

𝑡

𝐾 𝑡, 𝑠 𝑓 𝑠 𝑑𝑠 + 𝑔 𝑡 = 𝑓(𝑡)

That is:



𝑔 𝑡 =
𝑓 0 𝑡1−∝(𝑡)

𝜀 1 − 𝛼(𝑡)

So, we have a linear Volterra integral equation of 2nd kind

න
0

𝑡

𝐾 𝑡, 𝑠 𝑓 𝑠 𝑑𝑠 + 𝑔 𝑡 = 𝑓(𝑡)

with

Continuous  if 𝛼(𝑡) ∈ (0,1)

𝐾 𝑡, 𝑠 = 𝑡 − 𝑠 −∝(𝑡) −
1

𝜀 Γ 1 −∝ 𝑡
+
𝑎

𝜀
𝑡 − 𝑠 ∝(𝑡)

K(t,s) is a weakly singular kernel. This kernel is unbounded when s-t but
Its integral over [0,T] is finite (integrable kernel).

This equation is also called Abel integral equation.

continuous on  0≤ 𝑠 ≤t ≤T and K(t,t)≠ 0𝐾0(𝑡, 𝑠)



Theorem:

The Abel IE with                                     

and weakly singular integrable kernel

with                         and  ∃ min
𝑡∈𝐼

∝ 𝑡 ≠ 0,

possesses a unique solution                        .

This solution has the representation

where the resolvent kernel 𝑅(𝑡, 𝑠) of the kernel 𝐾(𝑡, 𝑠) has the form 

with 𝑄0 continuous on D.

𝐾 𝑡, 𝑠 = 𝑡 − 𝑠 −∝(𝑡) 𝐾0(𝑡, 𝑠)

න
0

𝑡

𝐾 𝑡, 𝑠 𝑓 𝑠 𝑑𝑠 + 𝑔 𝑡 = 𝑓(𝑡) 𝑔 ∈ 𝐶0 𝐼 , 𝐾0 ∈ 𝐶
0 𝐼

∝∈

𝑓 ∈ 𝐶0 𝐼

𝑓 𝑡 = 𝑔 𝑡 + න
0

𝑡

𝑅 𝑡, 𝑠 𝑔 𝑠 𝑑𝑠

𝑅 𝑡, 𝑠 = 𝑡 − 𝑠 −∝(𝑡) 𝑄0(𝑡, 𝑠)

𝐶0(𝐼)



Theorem

If                                        is continuous, and fulfils the condition that for all

we have:

and                                               is continuous and fulfils:

for all 

then the VODE initial condition problem:

Has a unique solution on 𝑡 ≥ 0. 

𝐷∝(𝑡) 𝑥 − 𝑥0 = 𝑓 𝑡, 𝑥 𝑡 , 𝑥 0 = 𝑥0

∝ 𝑡 : 𝑅+ → (0,1)

𝑝 ∈ 1,min
𝑡≥0

1

∝ (𝑡)
,

1

1 −∝ (𝑡)
sup
𝑡≥0

Γ(1 + 𝑝 (∝ 𝑡 − 1)

Γ(∝ 𝑡 )
≤ +∞

𝑓 𝑡, 𝑥 : 𝑅+ × 𝑅 → 𝑅

𝑓 𝑡, 𝑥 − 𝑓(𝑡, 𝑦) ≤ 𝐹(𝑡) 𝑥 − 𝑦 𝑡 ≥ 0, 𝑥, 𝑦 ∈ 𝑅



Solution for VODE equation with ∝ constant almost all interval t ∈ (0, 1), except 

a narrow and sharp drop at t = 0.5. The two solid lines are exact solutions for these 

extreme values of ∝ and the dashed curve is the VODE numerical solution:
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Solution for VODE equation with ∝ a step function at t = 0.5. The two 

solid lines are exact solutions for the extreme values of ∝ and the dashed 

curve is the VODE numerical solution:
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Solution for VODE equation with ∝ oscillating. The two solid lines are exact 

solutions for the extreme values of ∝ and the dashed curve is the VODE 

numerical solution:
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Solution for VODE equation with ∝ a step function at t = 0.5. The two 

solid lines are exact solutions for the extreme values of ∝ and the dashed 

curve is the VODE numerical solution:
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For the integer differential calculus, the tangent bundle TM over a manifold can be constructed for a 
given local differential structure with standard partial derivatives 𝝏𝒊. 

Such an approach can be generalized to a fractional case when instead of 𝝏𝒊 the differential structure is 
substituted, for instance, by the left Caputo derivatives:

𝑫𝒊
𝜶𝒇(𝒙) =

𝟏

Γ 𝒏 − 𝜶
න
𝟎

𝒙𝝏𝒏𝒇(𝒙′)

𝝏𝒙′𝒏
𝒅𝒙′

𝒙 − 𝒙′ ∝+𝟏−𝒏

with ∝∈ (𝒏 − 𝟏, 𝒏), for every local coordinate I on a local chart on M

Based on this we define the fractional tangent bundle 𝑻∝𝑴 for ∝∈ (𝟎, 𝟏) where the components of the 
tangent vectors are Caputo derivatives.

With these vectors we can mimic the classic differential geometry and build local bases of vectors and 
the tangent fiber bundle.
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We define fractional differential as dual local vector bases:

𝒅𝜶 = σ𝒋=𝟏
𝒏 𝒅𝒙𝒋

𝜶
𝑫𝒋
𝜶

With this definition we build fractional differential 1-forms of component the functions 𝑭𝒋:

𝝎𝜶 =
𝟏

Γ 𝒏 − 𝜶


𝒋=𝟏

𝒏

𝒅𝜶 𝒙𝒋
𝜶
𝑭𝒋(𝒙)

With the corresponding fractional exterior derivative we have a well defined fractional 
differential geometry structure on any smooth manifold M.

S. Vacaru, J. Math. Phys. 46 (2005) 042503; Rep. Math. Phys. 63 (2009) 95-110
D. Baleanu and S. Muslih, Adv. Frac. Calc. 2 (2007) 115-126
V. E. Tarasov, Lett. Math. Phys. 73 (2005) 49-58.
G. Perelman, arXiv: math. DG/ 03109



Next step is to apply fractional calculus towards a generalization of the Fundamental 
Theorem of Calculus. 

With fractional differential geometry presented, we can introduce differential and 
integral vector operations, and the fractional Stokes’ theorem.

By the duality endowed on M by cohomology and Stokes’ formula we can introduce 
new definition for the boundary, i.e. the fractional boundary:

න𝒅∝𝝎∝ = න𝝎∝

Equation valid for all 𝝎 n-1 forms defined on all n-1 submanifolds of M, and to be 
solved for 𝑩∝ knowing that 𝑩∝=𝟏 = 𝝏𝑴.

M 𝑩∝
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For example for n=1 and ∝∈ 𝟎, 𝟏 the Riemann-Liouville fractional generalization of the Fundamental 
Theorem of Calculus does not work as expected:                                   

𝒂 𝑰𝒃
∝

𝒂 𝑫𝒙
∝𝒇 𝒙 = 𝒇 𝒃 −

𝒃 − 𝒂 ∝

𝜞 𝒂 𝒂 𝑰𝒃
∝−𝟏𝒇 𝒙 ≠ 𝒇 𝒃 − 𝒇(𝒂)

In the present literature, for example:

V. E. Tarasov, Ann. Physics 323 (2008) 2756
J.T. Foley, A. J. Devaney, Phys. Rev. B 12 (1975) 3104
K. Cottrill-Shepherd, M. Naber, J. Math. Phys. 42 (2001) 2203, etc.

the authors used the Caputo derivative to avoid problems with generalization of this theorem.

Our approach is different. By keeping using the Riemann-Leibnitz fractional derivative we are able to 
present a well defined topological generalization of the Fundamental Theorem of Calculus .

In this case the fractional generalization of the Fundamental Theorem of Calculus predicts that the 
deformation, or “fractionation” of the boundary of the segment [a,b] is a {a, b} and a subset of this 
interval of non-zero Lebesgue measure.
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Through ontogenesis and phylogenesis, 
and considering the peripatetic, empiricist 
“Nihil est in intellectu quod non prius fuerit in sensu” 
we identify 2 or 3 ways of approaching math for a human                        
Geometry, Algebra, Statistics 
created from human’s most important senses: vision + touching, hearing, olfaction.

Therefore the question:

For a hypothetic family of human-smart cats or dogs, for whom the most important 
sense is smelling, what type of new mathematics could they create?
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Space type Range Senses Ontogenesis and 
phylogenesis of 

math 

Physics-math 
modeling

Stereo
Long

Vision 2-dim geometry, 
topology Waves

(hyperbolic PDE)Hearing Algebra

Local

Local

Touch
3-dim geometry, 

topology
Thermo-
elasticity

(higher order 
PDE)

Stereo Olfaction Statistics Diffusion 
(parabolic PDE)Taste Statistics
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Can this model explain:
1. Triggering events?  
2. The rate of occurring of novelty
3. Dynamics
4. Change of topological and geometrical property of space?
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From the first computations’ results: YES
1. It can generate power laws for systems with moving boundary and there is one fit 

parameter only, the fractal dimension of the space.  
2. It can mimic very well the rate of occurring of novelty for combinatorial models, 

urn models, criticality-phase transition models, patent law (highly nonlinear) 
model.

3. It has well defined dynamics
4. It involves the requested changes in topology and geometry of new adjacent

potential boundaries.
5. Alternate models: Euler or Chern-Wyel characteristics: dimension of holes in a 

manifold is the number of times drawn. 



Our preliminary simulations fit a large set of present and successful models:

Includes major hypotheses and features of the Kauffman’s models for future, novelty, 
innovation, appears to be in agreement with the correlated novelties model (2014, 
2017  – Tria, Loreto, Servedio, Strogatz, ), the combinatorial model for patents (2015 -
Youn, Strumsky, Bettencourt, Lobo), population growth models (2015 – Ribeiro & 
Ribeiro), Heap’s law model (2005 – Leijenhorst, van der Weide), neuronal time-scale 
models (2015 – Zhigalov, Arnulfo, Nobili, Palva), scientific fields topological transition 
results (2015, 2016 – Bettencourt, Kaiser), pace of global innovations in energy model 
(2012 – Bettencourt, Trancik, Kaur), scaling and collapsing sample space energy model 
(2015 – Corominas-Murtra, Hanel, Thurner). 

Also, there is a very good pure math backup from the work of:  Jumarie, Caputo 
Samko, Kilbas, Hilfer, Tarasov, Cao, (fractional derivatives), G. Pereleman, Baleanu, 
Vacaru (fractional and Ricci flow), Whitney, Harrison (Stokes, Green), etc. 
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Looking very much forward for corrections, 
discussions,  and collaboration,

Thank you for your patience!

Of course there are still many issues and nuts and bolts to tight:

Ex. 1: The link between the early adoption of an innovation and its 
largescale spreading?

Ex. 2: Influence of laws and administrative constraints on creativity and 
production of novelty?

Ex. 3: Needs a better model-free explanation for the fractal dimension 
as free fitting parameter.

Etc. …



APPENDICES



Assume that we have an ideal olfactory analyzer capable of labeling all possible stable gaseous chemical 
combinations, in all possible relative concentration by some tags chosen from a measurable space 𝑵,𝝁 . 
If the analyzer response is linear the subsets of 𝑵 can be organized as an additive 𝝈-algebra, and 
eventually as a measurable space. 

Even in case of a detector with nonlinear response (like a real nose), having detection thresholds we can 
still construct a k-additive fuzzy measurable Sugeno-Grabisch space (N, F, μ). 

However, these combinations of fragrances arrive at the nose through ontogenesis and phylogenesis 
experience and their effect into the brain will be different and nonlinear. So, everyone’s life experience will 
map the nose’s signals in specific way. It is like valuating each subset with a new measure, like a probability 
measure. In this way, the process of olfaction and fragrance memory could be organized as a mathematical 
statistics. 

Stochastic Differential Equations (SDE) are related to Fokker-Planck equation (FPE) which is in a way similar 
to the Schrödinger equation. There is equivalence between FP equation and path integration theory 
through quantum mechanics and critical dynamics (FP equation can be transformed into the Schrödinger 
equation by rescaling a few variables). Every FP equation is equivalent to a path integral. When applied to 
particle position distributions SDE are equivalent to the convection–diffusion equations. 



Conclusion:  
Along with ontogenesis and phylogenesis human may have created three types of math in their brains, 
geometry, algebra and statistics, from their most important senses sight, hearing and the other local ones, 
respectively. 

Animals can do a rough sort of math by summing sets of objects or sounds, or tell the difference between 
small and large amounts of numbers. [M. Tennesen, Sci. Am., Sept. 2009]

If a new family of very smart cats or dogs can develop, for whom the most important sense is smelling, 
what new type of mathematics could they have in their brains?


