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A Bic QuUEsTION TO BE SoLVvED IN 21sT CENTURY
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Q. How can we ‘mathematically-well' extract the essence of biology

beyond its physical features or constraints?




A NoveEL CoNCEPTUAL FRAMEWORK TO UNDERSTAND LIFE
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RECENT APPLICATIONS OF INFORMATION THEORY TO LIFE SCIENCE

* "Nonequilibrium generation of information in copolymerization processes”

Andrieux, D. and Gaspard, P. Proc Natl Acad Sci U S A. 105: 9516 (2008).

Introduces thermodynamical equations for copolymerization processes of nucleic acids.

* "Robustness and Compensation of Information Transmission of Signaling Pathways"

Uda, S. et al. Science 341 (6145), 558-561. doi: 10.1126/science.1234511 (2013).

Calculates the mutual information transmitted through signaling pathways.

 "Maxwell' s demon in biochemical signal transduction with feedback loop."

Ito, S. and Sagawa, T. Nat. Commun. 6:7498 doi: 10.1038/ncomms8498 (2015).
Elucidates that transfer entropy gives the upper bound of robustness of signal transduction

against environmental fluctuations based on the second law of thermodynamics with information.



A ComPARISON BETWEEN ARTIFICIAL COMMUNICATION SYSTEM AND BIOLOGICAL SYSTEM
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Information Source DNA or RNA Cellular State (Polypeptides) of n-th generation
Encode/Encoder Replication/DNA polymerase ?

Channel Intracellular Space ?
Decode/Decoder ? Central Dogma/RNA polymerase, transfer RNA
Destination ? Cellular State (Polypeptides) of (n+1)-th generation




ARTIFICAL COMMUNICATION SYSTEM V.s. 'SELF-ORrRGANIZED' COMMUNICATION SYSTEM

* Artificial Communication System

A communication system, which can be artificially assigned with optimal coding system.
Source alphabet and code alphabet should be predetermined.
Shannon entropy gives a lower bound of average code length.

ex.) Standard information theory, Multi-user information theory

» 'Self-Organized’ Communication System

A communication system, which seems to have spontaneously evolved its coding system.

Source alphabet / Code alphabet cannot be predetermined.

What kind of entropy gives a lower bound of average code length?

ex.) Biological systems (central dogma), Natural language



GeNEeTIc CobE (CoboN TaBLE) As A K-ARY CoDE TREE
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* Information source: Amino Acids, Code alphabet: a,t(u),g,c
* Uniquely decodable code

All codes have same description length (Block code).
* Instantaneously decodable code

Any codes are not prefix part of other codes (Prefix code).




GeNETIC Cobe (CoponN TaBLE) As A K-ArY CobEe TREE
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Information Source DNA or RNA Cellular State (Polypeptides) of n-th generation
Encode/Encoder Replication/DNA polymerase ?

Channel Intracellular Space ?
Decode/Decoder ? Central Dogma/RNA polymerase, transfer RNA
Destination ? Cellular State (Polypeptides) of (n+1)-th generation




ONE PARAMETER EXTENSION OF SHANNON ENTROPY

-
Boltzmann-Gibbs-Shannon g-generalization (Tsallis)
Statistical Independence Independent Non-Independent
Shannon Khinchin axioms  (g-)generalized Shannon Khinchin axioms
Axioms « Shannon additivity * (g-)generalized Shannon additivity
\ 1- (pl. )q
EntI’OQ}_’ Sl(pl,..-,pn):—kzpilnpi S (pl,...’pn): i=1
i=1 q ¢(q)
Additivity 5,(X.Y)=5,(x)+5,(7) 5,(%.¥)=5,(x)+5,(¥)-0(a)s,(x)s,(¥)
1
exponential eXp(X) equ X:= |:]_ + (]_ — CI)X:|1_q
logarithm Inx In xm— x71-1
q 1_ q




APPLICATION OF TsALLIS STATISTICS TO DNA SEQUENCES

* "Long-range correlations in nucleotide sequences”
Peng, C.-K. et al. Nature 356 (168). doi: 10.1038 (1992)

DNA walk' extracts the power-law features of intron-containing genes

ATAGGGCAAAAATGCATGCAAGT

and nontranscribed regulatory DNA sequences within genome.

* "Superstatistical model of bacterial DNA architecture."
Bogachev, M. . et al. Sci. Rep. 7, 43034; doi: 10.1038/srep43034 (2017)
Internucleotide interval distribution within genome from Archea to Homo sapience follows
g-exponential distribution.

* "Complex multifractal nature in Mycobacterium tuberculosis genome."
Mandal, S. et al. Sci. Rep. 7, 46395; doi: 10.1038/srep46395 (2017).
Multifractal analyses conducted on the highly polymorphic region of each gene
in Mycobacterum tuberculosis genome.

* "Dynamic Organization of Chromatin Domains Revealed by Super-Resolution Live-Cell Imaging.”

Nozaki, T. et al. Molecular Cell., ; doi: 10.1016/j.molcel2017.06.018 (2017)



GeNEeTIc CobE (CoboN TaBLE) As A K-ARY CoDE TREE
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* Information source: Amino Acids, Code alphabet: a,t(u),g,c
* Uniquely decodable code

All codes have same description length (Block code).
* Instantaneously decodable code

Any codes are not prefix part of other codes (Prefix code).




TsaLLIS ENTROPY FOR Q-GENERALIZED CoDE TREE

K-ary code tree g-generalized K-ary code tree
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* "Tsallis entropy as a lower bound of average description length for the g-generalized code tree."

Suyari, H. Proceedings of 2007 IEEE International Symposium on Information Theory, pp.901-905, 2007



TsaLLis ENTROPY FOR Q-GENERALIZED CoDE TREE

K-ary code tree g-generalized K-ary code tree
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* For 0<q<1, K <K holds. Shannon entropy gives a lower bound of average code length.

* For q>1, there is a case of K. >K, in which Tsallis entropy gives a lower bound.

* The diversity of code alphabet increases.
* When the nuber of source alphabet is fixed, it is possible to make its average code length shorter.
* The feature that the nuber of code alphabet cannot be predetermined can be preferable for the case

when the number of source alphabet cannot be predermined (Central Dogma, Natural Language).
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