# Innovation vs. improvement in eco-evolutionary dynamics

Luca Peliti September 6, 2017



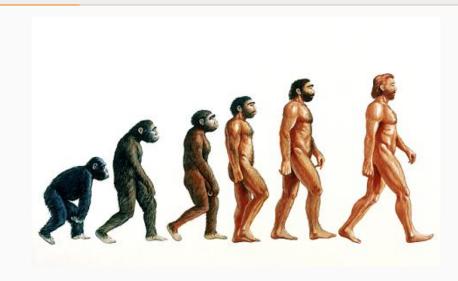
lucaOpeliti.org

- 1. Introduction
- 2. Evolution and ecology: A solvable model
- 3. Summary

# Evolution as improvement

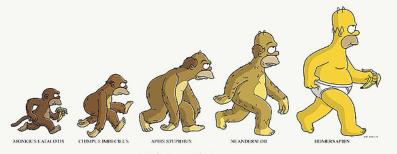
- In the classical evolution scenarios, natural selection acts towards the optimization of the species fitness
- This is often represented as a tendency of a life form to develop towards "more and more perfect forms"

# Images of evolution



DAILY MAIL

# Images of evolution

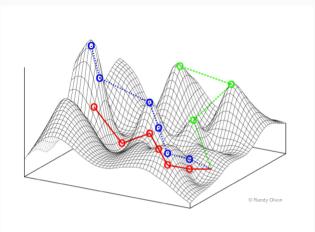


#### HOMERSAPIEN

#### BITREBELS

# Fitness landscapes

This is often represented by describing life forms as climbing uphill in a *fitness landscape* (WRIGHT, KAUFFMAN, GAVRILETS)



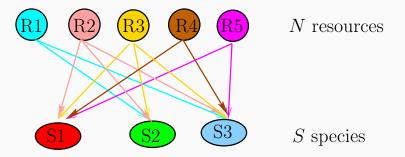
#### Scala Naturæ

This is not so different from the medieval concept of Scala Naturæ



So, why doesn't evolution stop?

- The "fitness landscape" is a seascape: it changes with time
- Most of its changes are due to the evolution of other, coexisting, life forms
- We need to understand the coevolution of a large number of coexisting life forms
- Novel aspects emerge when the number of coexisting life forms is large
- In this context, evolution is dominated by innovation ("creation" of new niches) rather than improvement (higher efficiency or lower cost)



#### MACARTHUR AND LEVINS, 1967

Resource flux:  $R_i$ , i = 1, ..., NPopulation dynamics:  $dn_{\mu}/dt = b_{\mu}n_{\mu} \Delta_{\mu}(\boldsymbol{h})$ ,  $\boldsymbol{h} = (h_i)$ Resource surplus:  $\Delta_{\mu}(\boldsymbol{h}) = \sum_i \sigma_{\mu i} h_i - \chi_{\mu}$ ,  $\mu = 1, ..., S$ Metabolic Strategies:  $\sigma_{\mu} = (\sigma_{\mu 1}, ..., \sigma_{\mu N})$ Total demand:  $T_i(\boldsymbol{n}) = \sum_{\mu} \sigma_{\mu i} n_{\mu}$ Resource availability:  $h_i = R_i/T_i = H_i(T_i)$ 

Feedback loop:

- $\cdot$  Growth of exploiting population leads to decrease in availability
- Decrease in availability leads to decrease in population growth

Lyapounov function (MacArthur, 1969):

$$F(\boldsymbol{n}) = \sum_{i} R_{i} \log T_{i}(\boldsymbol{n}) - \sum_{\mu} n_{\mu} \chi_{\mu}$$
$$\frac{\mathrm{d}F}{\mathrm{d}t} = \sum_{\mu} b_{\mu} n_{\mu} \Delta_{\mu}^{2} \ge 0$$

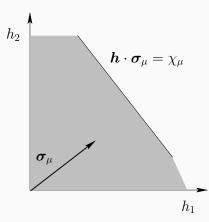
Global optimization of F for a given set of strategies and cost

Steady state:

• If 
$$n_\mu > 0$$
,  $\Delta_\mu = 0$ , i.e.,  $oldsymbol{h} \cdot oldsymbol{\sigma}_\mu = \chi_\mu$ 

+ If  $n_{\mu}=0$ ,  $m{h}\cdotm{\sigma}_{\mu}<\chi_{\mu}$  ("forbidden region")

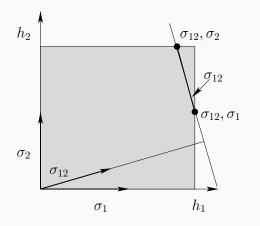
Geometric interpretation (TILMAN, 1982):



Steady state:

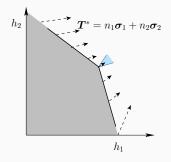
- $\cdot$   $\sigma_1$ ,  $\sigma_2$  are "specialists" with cost  $\chi_0$
- +  $\sigma_{12}$  is a "generalist" with cost  $\chi_{12} < \chi_0$

The steady state contains  $\sigma_{12}$  and possibly one of  $\sigma_1$  or  $\sigma_2$ :



# Locating the steady state

- At the steady state  $h^*$ ,  $n^*$ , the vector of total demand  $T(n^*)$ must point strictly outward from the unsustainable (gray) region, since  $T^* = \sum_{\mu} n_{\mu} \sigma_{\mu}$
- Define a vector field  $T_0(h)$  such that  $T_{0i}(h) = R_i/h_i$ , then  $T_0(h^*) = T^*$
- Thus follow the vector field  $T_0$  along the boundary of the unsustainable region, till locating where it points strictly outwards



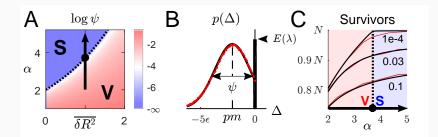
# MacArthur's model in large dimensionality

What happens when  $N \gg 1$ ?

- M. TIKHONOV (2015) introduced MacArthur's model with quenched disorder to the statphys community
- Several researchers analyzed the model in large dimensions by statphys methods (replica, cavity method): ТІКНОNOV himself, and ADVANI, BUNIN, МЕНТА, MONASSON, ...
- TIKHONOV and MONASSON find a phase transition in large ecosystems:
  - **V phase:** "vulnerable": The number of surviving species is much smaller than *N*, the system is vulnerable to a change of external conditions
  - **S phase:** "stable": There are exactly *N* species which can adapt to change in external conditions without going extinct
- More recently, they analyzed the evolutionary implications of the model

# The transition

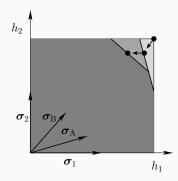
- $\cdot \ \sigma_{\mu i} = 1$  with probability p (else 0),  $\chi_{\mu} = \sum_i \sigma_{\mu i} + \epsilon x_{\mu}$
- Control parameters: N,  $\alpha = S/N$ , p,  $\epsilon$ ,  $\overline{\delta R^2}$
- Order parameters:  $m = \overline{h}, \psi = \overline{(h_i \overline{h})^2}$



TIKHONOV AND MONASSON, 2016

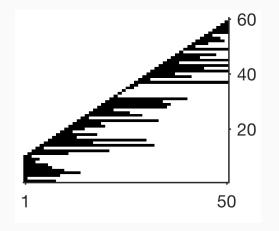
# **Evolution of communities**

- + # of possible species:  $2^N \gg N$
- Keep introducing new species ( $\alpha = S(t)/N$  measures time)
- Let the system reach steady state each time
- Allow "extinct" species to resurrect
- Is "resurrection" moot?



# Cost optimization?

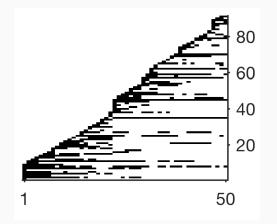
The "best species" model:



TIKHONOV AND MONASSON, 2017

# Cost optimization?

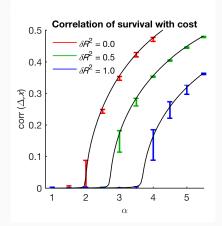
The actual simulation (N = 15,  $\overline{\delta R^2} = 1.5$ ):



TIKHONOV AND MONASSON, 2017

#### Is cost relevant?

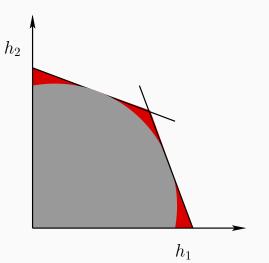
For  $\alpha = S/N < \alpha_{\rm C}$ , the correlation between  $x_{\mu}$  (cost) and  $\Delta_{\mu}$  (viability) vanishes:



#### TIKHONOV AND MONASSON, 2017 13

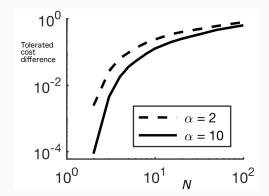
#### Is cost relevant?

Tolerated cost in the presence of random strategies of cost 1:



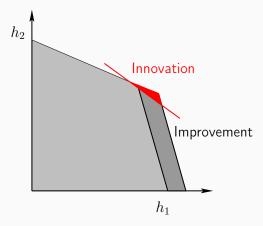
#### TIKHONOV AND MONASSON, 2017 <sup>14</sup>

# Tolerated cost difference for large N



TIKHONOV AND MONASSON, 2017

# Invasion strategies at large N



#### TIKHONOV AND MONASSON, 2017

# Summary

- Complex ecosystems may work in a "shielded" regime, which is not vulnerable to fluctuations in the outside environment
- This obtains by the introduction of species which operate a workable compromise in resource consumption, while cost is of lesser importance
- In large dimensionality, the room for innovation is exponentially larger than that of improvement (innovation as "environmental engineering")
- Is a "one-dimensional" fitness concept a good cue in this situation?

Caveats:

- The model is very simple (no RSP)
- $\cdot\,$  As soon as "producers" appear, there's no Lyapounov function
- Good starting point (cf. HOPFIELD's model)?

# Thank you!

## References i

- S. Wright, The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in Evolution, Proceedings of the Sixth International Congress of Genetics 1 356-366 (1932)
- 2. S. Kauffman, The Origins of Order, (Oxford U. P., 1993)
- 3. S. Gavrilets, Fitness Landscapes and the Origin of Species, (Princeton U. P., 2004)
- R. MacArthur and R. Levins, Competition, habitat selection, and character displacement in a patchy environment, *Proc. Natl. Acad. Sci. USA* 51 1207–1210 (1964)
- R. MacArthur and R. Levins, The limiting similarity, convergence, and divergence of coexisting species, *The American Naturalist*, 101 377–385 (1967)

# References ii

- R. MacArthur, Species packing, and what interspecies competition minimizes, *Proc. Natl. Acad. Sci. USA* 64 1369–1371 (1969)
- 7. D. Tilman, *Resource Competition and Community Structure* (Princeton U.P., 1982)
- 8. T. W. Schoener, The new synthesis: Understanding the Interplay of Evolutionary and Ecological Dynamics, *Science* **331** 426–429 (2011)
- 9. M. Tikhonov, Theoretical ecology without species, arXiv:150402550 (2015), to appear in *Phys. Rev. E*
- 10. M. Tikhonov, Community-level cohesion without cooperation, *eLife* **5** e15747 (2016)

# References iii

- M. Tikhonov and R. Monasson, A collective phase in resource competition in a highly diverse ecosystem, *Phys. Rev. Lett.* **118** 048103 (2017)
- M. Advani, G. Bunin and P. Mehta, Environmental engineering is an emergent feature of diverse ecosystems and drives community structure, arXiv:170703957 (2017)
- M. Tikhonov and R. Monasson, Innovation rather than improvement: a solvable high-dimensional model highlights the limitations of scalar fitness, arXiv:1708.05453 (2017)