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Evolution as improvement

• In the classical evolution scenarios, natural selection acts
towards the optimization of the species fitness

• This is often represented as a tendency of a life form to develop
towards “more and more perfect forms”
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Images of evolution

Daily Mail
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Images of evolution

Bitrebels
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Fitness landscapes

This is often represented by describing life forms as climbing uphill
in a fitness landscape (Wright, Kauffman, Gavrilets)
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Scala Naturæ

This is not so different from the medieval concept of Scala Naturæ
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Evolution and ecology

So, why doesn’t evolution stop?

• The “fitness landscape” is a seascape: it changes with time
• Most of its changes are due to the evolution of other, coexisting,
life forms

• We need to understand the coevolution of a large number of
coexisting life forms

• Novel aspects emerge when the number of coexisting life forms
is large

• In this context, evolution is dominated by innovation (“creation”
of new niches) rather than improvement (higher efficiency or
lower cost)
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MacArthur’s model of Resource Competition

S1 S species

R1

S2 S3

N resourcesR3R2 R5R4

MacArthur and Levins, 1967
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MacArthur’s model of Resource Competition

Resource flux: Ri, i = 1, . . . , N

Population dynamics: dnµ/dt = bµnµ ∆µ(h), h = (hi)

Resource surplus: ∆µ(h) =
∑

i σµihi − χµ, µ = 1, . . . , S

Metabolic Strategies: σµ = (σµ1, . . . , σµN )

Total demand: Ti(n) =
∑

µ σµinµ
Resource availability: hi = Ri/Ti = Hi(Ti)

Feedback loop:

• Growth of exploiting population leads to decrease in availability
• Decrease in availability leads to decrease in population growth

Lyapounov function (MacArthur, 1969):

F (n) =
∑
i

Ri log Ti(n)−
∑
µ

nµχµ

dF

dt
=

∑
µ

bµnµ∆
2
µ ≥ 0

Global optimization of F for a given set of strategies and cost 7



MacArthur’s model of Resource Competition

Steady state:

• If nµ > 0, ∆µ = 0, i.e., h · σµ = χµ

• If nµ = 0, h · σµ < χµ (“forbidden region”)

Geometric interpretation (Tilman, 1982):

σµ

h1

h2

h · σµ = χµ
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MacArthur’s model of Resource Competition

Steady state:

• σ1, σ2 are “specialists” with cost χ0

• σ12 is a “generalist” with cost χ12 < χ0

The steady state contains σ12 and possibly one of σ1 or σ2:

σ12

σ12, σ2

σ12, σ1

h1

h2

σ1

σ2
σ12
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Locating the steady state

• At the steady state h∗, n∗, the vector of total demand T (n∗)

must point strictly outward from the unsustainable (gray)
region, since T ∗ =

∑
µ nµσµ

• Define a vector field T0(h) such that T0i(h) = Ri/hi, then
T0(h

∗) = T ∗

• Thus follow the vector field T0 along the boundary of the
unsustainable region, till locating where it points strictly
outwards

T
∗
= n1σ1 + n2σ2

h1

h2
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MacArthur’s model in large dimensionality

What happens when N ≫ 1?

• M. Tikhonov (2015) introduced MacArthur’s model with
quenched disorder to the statphys community

• Several researchers analyzed the model in large dimensions by
statphys methods (replica, cavity method): Tikhonov himself,
and Advani, Bunin, Mehta, Monasson, …

• Tikhonov and Monasson find a phase transition in large
ecosystems:

V phase: “vulnerable”: The number of surviving species is
much smaller than N , the system is vulnerable to
a change of external conditions

S phase: “stable”: There are exactly N species which can
adapt to change in external conditions without
going extinct

• More recently, they analyzed the evolutionary implications of
the model
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The transition

• σµi = 1 with probability p (else 0), χµ =
∑

i σµi + ϵxµ

• Control parameters: N , α = S/N , p, ϵ, δR2

• Order parameters: m = h, ψ = (hi − h)2
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Evolution of communities

• # of possible species: 2N ≫ N

• Keep introducing new species (α = S(t)/N measures time)
• Let the system reach steady state each time
• Allow “extinct” species to resurrect

Is “resurrection” moot?

h1

h2

σ2 σB

σA

σ1
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Cost optimization?

The “best species” model:

Tikhonov and Monasson, 2017
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Cost optimization?

The actual simulation (N = 15, δR2 = 1.5):

Tikhonov and Monasson, 2017
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Is cost relevant?

For α = S/N < αC, the correlation between xµ (cost) and ∆µ

(viability) vanishes:

Tikhonov and Monasson, 2017 13



Is cost relevant?

Tolerated cost in the presence of random strategies of cost 1:

h1

h2

Tikhonov and Monasson, 2017 14



Tolerated cost difference for large N

N

Tolerated
cost
difference

Tikhonov and Monasson, 2017

15



Invasion strategies at large N

Improvement

h2

Innovation

h1

Tikhonov and Monasson, 2017
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Summary

• Complex ecosystems may work in a “shielded” regime, which is
not vulnerable to fluctuations in the outside environment

• This obtains by the introduction of species which operate a
workable compromise in resource consumption, while cost is of
lesser importance

• In large dimensionality, the room for innovation is exponentially
larger than that of improvement (innovation as “environmental
engineering”)

• Is a “one-dimensional” fitness concept a good cue in this
situation?

Caveats:

• The model is very simple (no RSP)
• As soon as “producers” appear, there’s no Lyapounov function
• Good starting point (cf. Hopfield’s model)?
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Thank you!
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