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Power laws are pests
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• they are everywhere

• its hard to control them

• you never get rid of them
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City size

MEJ Newman (2005)

multiplicative
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Rainfall

SOC
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Landslides

SOC
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Hurrican damages

secondary (multiplicative) ???

rome sep 7 2017 7



Financial interbank loans

multiplicative / preferential
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Forrest fires in various regions

SOC ?
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Moon crater diameters

MEJ Newman (2005)

???
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Gamma rays from solar wind

MEJ Newman (2005)
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Movie sales

SOC

rome sep 7 2017 12



Healthcare costs

multiplicative ???
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Particle physics

???
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Words in books

MEJ Newman (2005)

preferential / random / optimization
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Citations of scientific articles

MEJ Newman (2005)

preferential
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Website hits

MEJ Newman (2005)

preferential
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Book sales

MEJ Newman (2005)

preferential
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Telephone calls

MEJ Newman (2005)

preferential
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Earth quake magnitude

MEJ Newman (2005)

SOC
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Seismic events

SOC
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War intensity

MEJ Newman (2005)

???
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Killings in wars

???
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Size of war

???
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Wealth distribution

MEJ Newman (2005)

multiplicative
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Family names

MEJ Newman (2005)

???
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More power laws ...
• networks: literally thousands of scale-free networks

• allometric scaling in biology

• dynamics in cities

• fragmentation processes

• random walks

• crackling noise

• growth with random times of observation

• blackouts

• fossil record

• bird sightings

• terrorist attacks

• fluvial discharge, contact processes

• anomalous diffusion ...
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Where do they come from?
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Classical routes to understand power laws

• statistical mechanics: at phase transitions

• self-organised criticality

• multiplicative processes with constraints

• preferential processes
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did we miss something ?
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Many processes are history- or path dependent

• future events depend on history of past events

• often past events constrain possibilities for future

→ sample-space of these processes reduces as they unfold
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Example: History-dependent processes
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Sentence-formation is SSR
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Sample-Space Reducing Processes (SSR)
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SSR lead to exact Zipf law!

p(i) =
1

i

p(i) is probability to visit site i
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Proof by induction

Let N = 2. There are two sequences φ: either φ directly

generates a 1 with p = 1/2, or first generates 2 with p = 1/2,

and then a 1 with certainty. Both sequences visit 1 but only

one visits 2. As a consequence, P2(2) = 1/2 and P2(1) = 1.

Now suppose PN−1(i) = 1/i holds. Process starts with dice

N , and probability to hit i in the first step is 1/N . Also,

any other j, N ≥ j > i, is reached with probability 1/N .

If we get j > i, we get i in the next step with probability

Pj−1(i), which leads to a recursive scheme for i < N , PN(i) =
1
N

(
1 +

∑
i<j≤N Pj−1(i)

)
. Since by assumption Pj−1(i) =

1/i, with i < j ≤ N holds, some algebra yields PN(i) = 1/i.
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True for all systems with an adjacent
possible that shrinks over time
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What if not strictly SSR

φ ... Sample Space Reducing process (SSR)

φR ... Random walk

Mix both processes

Φ(λ) = λφ+ (1− λ)φR , λ ∈ [0, 1]

Add noise with strength (1−λ)→ any power becomes possible

p(i) = i−λ

noise (1− λ) is a surprise factor for SSR process
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The role of noise – result is exact too

Clearly p(λ)(i) =
∑N
j=1 P (i|j) p(λ)(j) holds, with

P (i|j) =


λ
j−1 + 1−λ

N for i < j (SSR)
1−λ
N for i ≥ j > 1 (RW )
1
N for i ≥ j = 1 (restart)

We get p(λ)(i) = 1−λ
N + 1

Np
(λ)(1) +

∑N
j=i+1

λ
j−1 p

(λ)(j)

to recursive relation p(λ)(i+ 1)− p(λ)(i) = −λ1
ip

(λ)(i+ 1)

p(λ)(i)

p(λ)(1)
=
∏i−1
j=1

(
1 + λ

j

)−1

= exp
[
−∑i−1

j=1 log
(

1 + λ
j

)]
∼ exp

(
−∑i−1

j=1
λ
j

)
∼ exp (−λ log(i)) = i−λ
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True for all systems with an adjacent
possible that shrinks over time with

probability λ
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History-dependent processes with noise

same convergence speed as CLT for iid processes
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SSR based Zipf law is extremely robust
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prior probabilities are practically irrelevant!
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Zipf law is remarkably robust – accelerated SSR
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What does this have to do
with networks?
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SSR is a random walk on directed ordered NW
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SSR = targeted random walk on networks

• for targeting need routing strategy

• simple choise Directed Acyclic Graph (no cycles)
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Simple routing algorithm

• take directed acyclic network fix it

• pick start-node

• perform a random walk from start-node to end-node (1)

• repeat many times from other start-nodes

• prediction visiting frequency of nodes follows Zipf law
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All diffusion processes on DAG are SSR

sample ER graph → direct it → pick start and end → diffuse
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Zipf holds for any link probability
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Exponential NW HEP Co-authors
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prior probabilities are practically irrelevant!
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What happens if introduce weights on links?

ER Graph

poisson weights power weights
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prior probabilities are practically irrelevant!
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What happens if introduce cycles?

ER → direct it → change link to random direction with 1− λ

noise level λ = 0.8 λ = 0.5
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Zipf’s law is an immense attractor!
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Zipf’s law is an attractor

• no matter what the network topology is → Zipf

• no matter what the link weights are → Zipf

• if have cycles → exponent is less than one
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And reality?
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Every good search process is SSR!
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What is good search?

Search is a SSR process. Good search is ...

• ... if at every step you eliminate more possibilities than you

actually sample

• ... every step you take eliminates branches of possibilities

if eliminate fast enough → power law in visiting times

if eliminate too little→ sample entire space (exhaustive search)
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Clicking on web page is often result of search
process
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adamic & hubermann 2002
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breslau et al 99
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What about exponents > 1?
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Multiplication factor µ

→ p(i) = i−µ
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What if we introduce
conservation laws?
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Conservation laws in SSR processes

Assume that you have duplication at every jump µ = 2

If you are at i → duplicate → one jumps to j, the other to k

conservation means: i = j + k.

For any µ, conservation means:

i = state1 + state2 + · · ·+ stateµ

→ p(i) = i−2 for all µ

This was found by E. Fermi for particle cascades
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Example for conservation: fragmentation in 2D

Click to start
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What if AP depends on age
of process?
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Assume that noise depends on the state λ(i)
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Can derive the relation

→ λ(x) = −x d
dx log pλ(x)

That can be proved as a theorem.
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Proof
The transition probabilities from state k to i are

pSSR(i|k) =

{
λ(k) qi

g(k−1) + (1− λ(k))qi if i < k

(1− λ(k))qk otherwise ,

g(k) is the cdf of qi, g(k) =
∑
i≤k qi. Observing that

pλ,q(i+ 1)

qi+1

(
1 + λ(i+ 1)

qi+1

g(i)

)
=
pλ,q(i)

qi

we get

pλ,q(i) =
qi
Zλ,q

∏
1<j≤i

(
1 + λ(j)

qj
g(j − 1)

)−1

∼ q(i)

Zλ,q
e
−∑j≤i λ(j)

q(j)
g(j−1)

Zλ,q is the normalisation constant. For uniform priors, taking logs and

going to continuous variables gives the result λ(x) = −x d
dx log pλ(x).
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Special cases λ(x) = −x d
dx log pλ(x)

• Zipf: no noise → p(x) = x−1

• Power-law: λ(x) = α → p(x) = x−α

• Exponential: λ(x) = βx → p(x) = e−β(x−1)

• Power-law + cut-off: λ(x) = α+βx → p(x) = x−αe−βx

• Gamma: λ(x) = 1− α+ βx → p(x) = xα−1e−βx
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Special cases λ(x) = −x d
dx log pλ(x)

• Normal: λ(x) = 2βx2 → p(x) = e−
β
2(x−1)2

• Stretched exp: λ(x) = αβ|x|α → p(x) = e−
β
α(x−1)α

• Gompertz: λ(x) = (βeαx − 1)βx → p(x) = eβx−αe
βx

• Weibull: λ(x) = β−ααxα +α− 1 →p(x) =
(
x
β

)α−1

e
−
(
x
β

)α

• Tsallis: λ(x) = βx
1−βx(1−Q) → p(x) = (1−(1−Q)βx)

1
1−Q
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Problems that are of SSR nature

• search, e.g. targeted diffusion

• language: sentence formation

• fragmentation: break spaghetti

• sequences of human behavior

• games: go

• internet communication
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Conclusions

• many history dependent processes are SSR

• SSR offers new route to scaling – huge applicability

• SSR is an extremely robust Zipf – priors don’t matter

• targeted diffusion on networks leads to Zipf’s law,

no matter what NW looks like → attractor

• all good search – has mechanism to generate power laws

• noise level determines power exponent

• if noise is state dependent – get practically all distribution

• Noise and SSR explain practically every statistics
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