Statistics of innovation: how statistics appears in search processes -all of it- from Gauss to Zipf

Stefan Thurner

www.complex-systems.meduniwien.ac.at www.santafe.edu

rome sep 7 2017

with Bernat Corominas-Murtra and Rudolf Hanel

BCM, RH, ST, PNAS 112 (2015) 5348-5353
BCM, RH, ST, New J Physics 18 (2016) 093010
BCM, RH, ST, J Roy Soc Interface 12 (2016) 20150330
ST, BCM, RH, Phys Rev E (2017) in press
BCM, RH ST, Sci Rep (2017) in press
BCM, RH, ST, arxiv.org/1706.10202

Power laws are pests

rome sep 7 2017 2

- they are everywhere
- its hard to control them
- you never get rid of them

City size

multiplicative

Rainfall

SOC

Landslides

SOC

Hurrican damages

secondary (multiplicative) ???

Financial interbank loans

multiplicative / preferential

MEDICAL UNIVERSITY SANTA FE INSTITUTE

Forrest fires in various regions

SOC ?

Moon crater diameters

Gamma rays from solar wind

Movie sales

SOC

Healthcare costs

estimated annual charges (dollars)

multiplicative ???

Words in books

preferential / random / optimization

Citations of scientific articles

Website hits

Book sales

Telephone calls

Earth quake magnitude

SOC

Seismic events

SOC

War intensity

???

Killings in wars

???

Size of war

Wealth distribution

multiplicative

Family names

More power laws ...

- networks: literally thousands of scale-free networks
- allometric scaling in biology
- dynamics in cities
- fragmentation processes
- random walks
- crackling noise
- growth with random times of observation
- blackouts
- fossil record
- bird sightings
- terrorist attacks
- fluvial discharge, contact processes
- anomalous diffusion ...

Where do they come from?

rome sep 7 2017 28

Classical routes to understand power laws

- statistical mechanics: at phase transitions
- self-organised criticality
- multiplicative processes with constraints
- preferential processes

did we miss something ?

Many processes are history- or path dependent

- future events depend on history of past events
- often past events constrain possibilities for future
- \rightarrow sample-space of these processes reduces as they unfold

Example: History-dependent processes

Sentence-formation is SSR

Sample-Space Reducing Processes (SSR)

rome sep 7 2017 35
SSR lead to exact Zipf law!

$$p(i) = \frac{1}{i}$$

p(i) is probability to visit site i

Proof by induction

Let N = 2. There are two sequences ϕ : either ϕ directly generates a 1 with p = 1/2, or first generates 2 with p = 1/2, and then a 1 with certainty. Both sequences visit 1 but only one visits 2. As a consequence, $P_2(2) = 1/2$ and $P_2(1) = 1$.

Now suppose $P_{N-1}(i) = 1/i$ holds. Process starts with dice N, and probability to hit i in the first step is 1/N. Also, any other j, $N \ge j > i$, is reached with probability 1/N. If we get j > i, we get i in the next step with probability $P_{j-1}(i)$, which leads to a recursive scheme for i < N, $P_N(i) = \frac{1}{N} \left(1 + \sum_{i < j \le N} P_{j-1}(i)\right)$. Since by assumption $P_{j-1}(i) = 1/i$, with $i < j \le N$ holds, some algebra yields $P_N(i) = 1/i$.

True for all systems with an adjacent possible that shrinks over time

What if not strictly SSR

 ϕ ... Sample Space Reducing process (SSR)

 ϕ_R ... Random walk

Mix both processes

$$\Phi^{(\lambda)} = \lambda \phi + (1 - \lambda) \phi_R \quad , \quad \lambda \in [0, 1]$$

Add noise with strength $(1-\lambda) \rightarrow$ any power becomes possible

$$p(i) = i^{-\lambda}$$

noise $(1 - \lambda)$ is a surprise factor for SSR process

The role of noise – result is exact too Clearly $p^{(\lambda)}(i) = \sum_{j=1}^{N} P(i|j) p^{(\lambda)}(j)$ holds, with

$$P(i|j) = \begin{cases} \frac{\lambda}{j-1} + \frac{1-\lambda}{N} & \text{for } i < j \quad (SSR) \\ \frac{1-\lambda}{N} & \text{for } i \ge j > 1 \quad (RW) \\ \frac{1}{N} & \text{for } i \ge j = 1 \quad (restart) \end{cases}$$

We get $p^{(\lambda)}(i) = \frac{1-\lambda}{N} + \frac{1}{N}p^{(\lambda)}(1) + \sum_{j=i+1}^{N} \frac{\lambda}{j-1}p^{(\lambda)}(j)$ to recursive relation $p^{(\lambda)}(i+1) - p^{(\lambda)}(i) = -\lambda \frac{1}{i}p^{(\lambda)}(i+1)$

$$\frac{p^{(\lambda)}(i)}{p^{(\lambda)}(1)} = \prod_{j=1}^{i-1} \left(1 + \frac{\lambda}{j}\right)^{-1} = \exp\left[-\sum_{j=1}^{i-1} \log\left(1 + \frac{\lambda}{j}\right)\right]$$
$$\sim \exp\left(-\sum_{j=1}^{i-1} \frac{\lambda}{j}\right) \sim \exp\left(-\lambda \log(i)\right) = i^{-\lambda}$$

True for all systems with an adjacent possible that shrinks over time with probability λ

History-dependent processes with noise

same convergence speed as CLT for iid processes

SSR based Zipf law is extremely robust

prior probabilities are practically irrelevant!

Zipf law is remarkably robust – accelerated SSR

What does this have to do with networks?

SSR is a random walk on directed ordered NW

note fully connected

SSR = targeted random walk on networks

- for targeting need routing strategy
- simple choise **Directed Acyclic Graph** (no cycles)

Simple routing algorithm

- take directed acyclic network fix it
- pick start-node
- perform a random walk from start-node to end-node (1)
- repeat many times from other start-nodes
- prediction visiting frequency of nodes follows Zipf law

All diffusion processes on DAG are SSR

sample ER graph \rightarrow direct it \rightarrow pick start and end \rightarrow diffuse

Zipf holds for any link probability

MEDICAL UNIVERSITY SANTA FE INSTITUTE

prior probabilities are practically irrelevant!

What happens if introduce weights on links?

ER Graph

poisson weights power weights

prior probabilities are practically irrelevant!

What happens if introduce cycles?

 $\mathsf{ER} \to \mathsf{direct} \ \mathsf{it} \to \mathsf{change} \ \mathsf{link} \ \mathsf{to} \ \mathsf{random} \ \mathsf{direction} \ \mathsf{with} \ 1-\lambda$

Zipf's law is an immense attractor!

Zipf's law is an attractor

- no matter what the network topology is \rightarrow Zipf
- no matter what the link weights are \rightarrow Zipf
- ${\ensuremath{\, \bullet}}$ if have cycles \rightarrow exponent is less than one

And reality?

Every good search process is SSR!

What is good search?

Search is a SSR process. Good search is ...

• ... if at every step you eliminate more possibilities than you actually sample

• ... every step you take eliminates branches of possibilities

if eliminate fast enough ightarrow power law in visiting times

if eliminate too little \rightarrow sample entire space (exhaustive search)

Clicking on web page is often result of search process

adamic & hubermann 2002

breslau et al 99

What about exponents > 1?

Multiplication factor μ

$$\rightarrow p(i) = i^{-\mu}$$

What if we introduce conservation laws?

Conservation laws in SSR processes

Assume that you have duplication at every jump $\mu=2$

If you are at $i \rightarrow duplicate \rightarrow one jumps to j, the other to k$ conservation means: <math>i = j + k.

For any μ , conservation means:

 $i = \text{state}_1 + \text{state}_2 + \dots + \text{state}_{\mu}$

$$\rightarrow p(i) = i^{-2}$$
 for all μ

This was found by E. Fermi for particle cascades

Example for conservation: fragmentation in 2D

Click to start

rome sep 7 2017 73

What if AP depends on age of process?

Assume that noise depends on the state $\lambda(i)$ (b)

Can derive the relation

$$\rightarrow \lambda(x) = -x \frac{d}{dx} \log p_{\lambda}(x)$$

That can be proved as a theorem.

rome sep 7 2017 77

Proof

The transition probabilities from state k to $i \mbox{ are }$

$$p_{\text{SSR}}(i|k) = \begin{cases} \lambda(k) \frac{q_i}{g(k-1)} + (1 - \lambda(k))q_i & \text{if } i < k \\ (1 - \lambda(k))q_k & \text{otherwise} \end{cases},$$

g(k) is the cdf of q_i , $g(k) = \sum_{i \leq k} q_i$. Observing that

$$\frac{p_{\lambda,q}(i+1)}{q_{i+1}}\left(1+\lambda(i+1)\frac{q_{i+1}}{g(i)}\right) = \frac{p_{\lambda,q}(i)}{q_i}$$

we get

$$p_{\lambda,q}(i) = \frac{q_i}{Z_{\lambda,q}} \prod_{1 < j \le i} \left(1 + \lambda(j) \frac{q_j}{g(j-1)} \right)^{-1} \sim \frac{q(i)}{Z_{\lambda,q}} e^{-\sum_{j \le i} \lambda(j) \frac{q(j)}{g(j-1)}}$$

 $Z_{\lambda,q}$ is the normalisation constant. For uniform priors, taking logs and going to continuous variables gives the result $\lambda(x) = -x \frac{d}{dx} \log p_{\lambda}(x)$.

MEDICAL UNIVERSITY SANTA FE INSTITUTE

Special cases
$$\lambda(x) = -x \frac{d}{dx} \log p_{\lambda}(x)$$

- Zipf: no noise $\rightarrow p(x) = x^{-1}$
- Power-law: $\lambda(x) = \alpha \quad \rightarrow \quad p(x) = x^{-\alpha}$
- Exponential: $\lambda(x) = \beta x \rightarrow p(x) = e^{-\beta(x-1)}$
- Power-law + cut-off: $\lambda(x) = \alpha + \beta x \quad \rightarrow \quad p(x) = x^{-\alpha} e^{-\beta x}$
- Gamma: $\lambda(x) = 1 \alpha + \beta x \rightarrow p(x) = x^{\alpha 1} e^{-\beta x}$

Special cases
$$\lambda(x) = -x \frac{d}{dx} \log p_{\lambda}(x)$$

• Normal: $\lambda(x) = 2\beta x^2 \rightarrow p(x) = e^{-\frac{\beta}{2}(x-1)^2}$

- Stretched exp: $\lambda(x) = \alpha \beta |x|^{\alpha} \rightarrow p(x) = e^{-\frac{\beta}{\alpha}(x-1)^{\alpha}}$
- Gompertz: $\lambda(x) = (\beta e^{\alpha x} 1)\beta x \rightarrow p(x) = e^{\beta x \alpha e^{\beta x}}$

• Weibull:
$$\lambda(x) = \beta^{-\alpha} \alpha x^{\alpha} + \alpha - 1 \rightarrow p(x) = \left(\frac{x}{\beta}\right)^{\alpha - 1} e^{-\left(\frac{x}{\beta}\right)^{\alpha}}$$

• Tsallis: $\lambda(x) = \frac{\beta x}{1 - \beta x(1 - Q)} \rightarrow p(x) = (1 - (1 - Q)\beta x)^{\frac{1}{1 - Q}}$

Problems that are of SSR nature

- search, e.g. targeted diffusion
- language: sentence formation
- fragmentation: break spaghetti
- sequences of human behavior
- games: go
- internet communication

Conclusions

- many history dependent processes are SSR
- SSR offers new route to scaling huge applicability
- SSR is an extremely robust Zipf priors don't matter
- \bullet targeted diffusion on networks leads to Zipf's law, no matter what NW looks like \rightarrow attractor
- all good search has mechanism to generate power laws
- noise level determines power exponent
- if noise is state dependent get practically all distribution
- Noise and SSR explain practically every statistics

