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Starting questionStarting question
What is the actual relevance of Lyapunov What is the actual relevance of Lyapunov 

exponents to practical predictability problems?exponents to practical predictability problems?
First naive answer:

True/reference trajectory         x(0)=x0
Perturbed/observed trajectory    x’(0)=x0+δ0



Let us identify the main aspects of the problemLet us identify the main aspects of the problem

In predictability vol I 
ECWF Seminar, Reading UK 1996

Lorenz 1996 models

or



Different regimes of error growthDifferent regimes of error growth

< 
ln

(δ
(t

)) 
>

exp(< ln(δ(t)) >)

What we want to estimate:
e.g. Error doubling time
T(δ,Δ) with Δ=2δ

What we have:
1. Lyapunov exponent
2. Saturation level 
   (size of the attractor)
3. Initial error δ



LE in the presence of different time scalesLE in the presence of different time scales
Slow (synoptic scales)

Fast (convective scales)

Slow degrees of freedom should be 
more predictable than faster ones: 
this is missed from usual Lyapunov 
analysis

Day 1Day 1

Day 3Day 3



Main problems with usual LEMain problems with usual LE
It is an asymptotic quantity while in practice we are typically far 
from any asymptotics (flucutations of the growth rate can be important)

In particular, both the amplitude of the initial error or of the chosen 
tolerance matters!

In the presence of many characteristic times, the LE only accounts 
for the  fastest one, while often the slowest ones are of interest



The finite-size Lyapunov exponentThe finite-size Lyapunov exponent
We want an indicator able to characterize the error
growth rate at changing the scale (of the initial error
δ and/or of our tolerance Δ)

“ ”
?

Aurell, Boffetta, Crisanti, Paladin & AV PRL 1996 J.Phys. A 1997



Mathematical difficultiesMathematical difficulties

Physical solutionPhysical solution
Abandoning the request of mathematical rigor, we can attempt aAbandoning the request of mathematical rigor, we can attempt an n 
operative (algorithmic) definition of an appropriate indicator such to operative (algorithmic) definition of an appropriate indicator such to 
ensure ensure that the usual LE is obtained in the proper limits, the idea is tothat the usual LE is obtained in the proper limits, the idea is to
use norms suggested by physical intuitionuse norms suggested by physical intuition

When considering non-infinitesimal uncertainties we face the problem
of dependence on the norm, furthermore we are forced to work in 
preasymptotic situations where establishing rigorous mathematical 
results is rather difficult. 

   

Note: another possible quantity is the ε-entropy (Kolmogorov et al 1956), but 
it is practically uncomputable & depends on the norm anyway



An algorithmic definition (I)An algorithmic definition (I)
n=1,…,N thresholds

i=1,…,Nd “doubling” time experiments

τi(δn)  first time for the error
        to grow from δn to δn+1

Growth rate 
at scale δn

FSLEFSLE

For δn->0 Benettin et al. Algorithm ==>  



An algorithmic definition (II)An algorithmic definition (II)
Essentially the same idea but 
rescaling only when the last
threshold is reached

Advantage: 
when performing the rescaling
at non-infinitesimal perturbations 
As in (I) we may exit from 
the attractor

Typically the two methods provide very close results



Application to predictability problemsApplication to predictability problems

• First Kind: when one assume to have a
perfect model but an error on the
knowledge of the initial condition

• Second Kind: when the exact dynamics
is uncertain and the model is thus
known with some error (parameters,
unresolved degrees of freedom etc…)



FLSE for a system with 2 times scalesFLSE for a system with 2 times scales
Coupled Lorenz ‘69 models with different time scales

slow fast

Boffetta, Giuliani, Paladin 
& AV J. Atm. Sci.  1998 



Predictability in a system with 2 times scalesPredictability in a system with 2 times scales
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Example: parametrization of fast time scalesExample: parametrization of fast time scales

True model Approximated model
(parametrization of small/fast scales)

x=slow
y=fast

For instance

Lorenz 1996
“true”      ->

“model”->

Boffetta, Cencini, Celani, Lacorata & AV J. Phys. A 2000



FSLE and test of quality of theFSLE and test of quality of the
parametrizationparametrization

TT

TM
T=true
M=model



Predictability & FSLE in turbulencePredictability & FSLE in turbulence
Turbulence is characterized by the presence of many characteristic scales 
and time scales

Basic ideas of classical Kolmogorov (1941) phenomenology 

Slow TL=L/U

Fast tD=TL Re-1/2

Characteristic times



Predictability & FSLE in turbulencePredictability & FSLE in turbulence
Classical theory of predictability (Lorenz 1969, Leith 1971, Leith & Kraichnan 1972)

Basic Idea: Given a perturbation on the velocity field at scale r/2
scale r will be completely uncertain after a time T(r)≈ TL (r/L)2/3

Therefore an uncertainty at the smallest active scale rD will reach L in a time

Standard LE

>>

FSLE

This result holds also considering
Corrections to K41



FSLE in shell models for 3d turbulenceFSLE in shell models for 3d turbulence

Aurell, Boffetta, Crisanti, Paladin & AV. PRL 1996 J.Phys. A 1997



FSLE in Atmospheric Boundary layerFSLE in Atmospheric Boundary layer

Predictability time

GRL 2002



Applications of FSLE to transport problemsApplications of FSLE to transport problems
The FSLE quantifies the growth rate between separating trajectories of a 
dynamical system at changing the scale of separation, it is thus best suited 
to charcterize trajectories separation in situations in which different physical
mechanisms are acting at different length scales

E.g. relative dispersion of tracers in fluid flows

or when δRu depends on R inducing different 
regimes for the evolution of R(t), e.g. turbulence 

FSLE is particularly useful when coping with situations in which asymptotic 
regimes cannot be established due to the presence of boundaries 

Main advantage of FSLE fixing the scale  may eliminate
Spurious effects appearing with the standard fixed time analysis



Fixed scale vs fixed time: a simple exampleFixed scale vs fixed time: a simple example



Dispersion in non-asymptotic situationsDispersion in non-asymptotic situations

t1.8

Dispersions of tracers
In a disk with 4 point vortices

Anomalous dispersion?

Due to the finite domain
no time asyptotics and 
thus difficulty of 
interpretation

Artale, Boffetta, Cencini, Celani & AV Phys. Fluids 1997



Dispersion in non-asymptotic situationsDispersion in non-asymptotic situations

The anomalous behavior is thus a spurious regime

Simply assuming exponential relaxation 
to the uniform distribution

λ1

λ(δ)



Easy to compute in experimentsEasy to compute in experiments

Symbolds different
Initial threshols δ0Boffetta, Cencini, Espa & Querzoli 

EPL 1999 & Phys. Fluids 2000

Experiment (PIV) & data analysis



Scale dependent diffusion coefficientScale dependent diffusion coefficient

D

Artale, Boffetta, Cencini, Celani & AV Phys. Fluids 1997



Relative dispersion in turbulenceRelative dispersion in turbulence

Chaotic dispersion Richardson Dispersion Standard Dispersion

Richardson 1926



Fixed scale vs Fixed time in turbulenceFixed scale vs Fixed time in turbulence

In principle one may think that the FSLE λ(δ) is the same as

BUT is not:
the main point is that λ(δ) depends only on the scale δ
while       will depend also on R(0) this is particularly relevant to turbulence
where looking at fixed times R(t) is strongly ifluenced by R(0)  



Relative dispersion in turbulenceRelative dispersion in turbulence

<R2(t)> 1/λ(R))>

t3

R2/3

Usual Fixed time analysis Fixed scale analysis

Biferale et al Phys. Fluids 2005

10243 DNS



Detection of barriers to transportDetection of barriers to transport

Resonance overlap
Chirikov regime

Melnikov regime

ε/B0

ω/ω0

Vertical mixing
Vs

Vertial “localization”

Boffetta, Lacorata, Redaelli & AV Physica D 2001



      FTLE      vs         FSLE      FTLE      vs         FSLE

r=100



Forward/Backward FSLE as proxies forForward/Backward FSLE as proxies for
stable/unstable manifoldstable/unstable manifold

Forward/Backward FSLE

E. Henràndez-Garcia et al

Forward/Backward FSLE

Koh & Legras Chaos 2002



Macroscopic/Collective chaosMacroscopic/Collective chaos

Macroscopic observable 

Natural expectation would have been 

m(t-1)

m
(t

)

m(t)=<m>+ O(N-1/2)

<- but there are cases in
which one observes a chaotic
behavior for the global observable
(Chaté & Manneville 1990/2)

Working hypothesis:
Microscopic<-> collisions         FAST
Macroscopic<-> Hydrodynamics SLOW

Two time scales the “slowest” emerging
From the dynamics



Macroscopic ChaosMacroscopic Chaos
107<-104=N 

λ(δ)

δ

δN1/2

λ(δ)

O(N-1/2)

slow fast

Shibata & Kaneko PRL 1998
Cencini, Falcioni, Vergni & AV Physica D 1999



ConclusionsConclusions

• Though non-rigorous the FSLE demonstrated to be a useful
tool to characterize predictability & transport properties
in many practial problems

• Main advantages: free from the asymptotics of infinite
time and infinitesimal perturbations which are unreachable
and, often, irrelevant to practical situations. Rather easy
to compute from data.

• Being based on (fixed) scale instead of (fixed) time is best
suited to characterize those situations in which the
different mechanisms at play manifest at different scales

• Word of care: necessity of physical input in the choice of
the norm
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