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Starting question

What is the actual relevance of Lyapunov
exponents to practical predictability problems?

First naive answer:

/ 5(t) &~ SpeMt =T (00, A) ~ I (é)
/ A1 do

True/reference trajectory x(0)=x, L /
Perturbed/observed trajectory  x'(0)=x,+9, 5(t) — |£B (t) — & (t)’




Let us identify the main aspects of the problem
Predictability — a problem partly solved

In predictability vol I
Edward N. Lorenz ECWF Seminar, Reading UK 1996
Lorenz 1996 models

dXp/dt = = Xp 2 Xp—1 + Xp1 Xp1 — Xi + F,

or J
dXi/dt = =Xy \(Xi—y — Xga1) = Xp — (he/B) Y Yk,
Jj=l1
dY;i/dt = —cbY oy 1 (Yjpax — Y1) — c¥jp -+ (he/B) X,

&> B
With the aid of some simple models, we describe situations where errors behave
as would be expected from a knowledge of X;, and other situations, particularly
in the earliest and latest stages of growth, where their behaviour is systematically
different. Slow growth in the latest stages may be especially relevant to the long-
range predictability of the atmosphere. We identify the predictability of long-term
climate variations, other than those that are externally forced, as a problem not yet
solved.




Different

What we want to estimate: s

e.g. Error doubling time

< In(6(1)) >

What we have:
1. Lyapunov exponent
2. Saturation level
(size of the attractor)
3. Initial error &

regimes of error growth

dXp/fdt = =Xp2Xp—1 + Xp1 Xp1 — Xi + F,
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LE in the presence of different time scales

J
dXp/dt = = Xp (Xj—2 — Xp+1) — Xy — {hc/‘b}z Yk, Slow (synoptic scales)

i=l1

{Iil/j’k}df = '"EbYJ+1 ;;{Yj.l.*: P

Yi—14) = Y + (he/b)Xy. Fast (convective scales)
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Slow degrees of freedom should be3
more predictable than faster ones::
this is missed from usual Lyapunov 3
analysis 3
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Main problems with usual LE

‘ It is an asymptotic quantity while in practice we are typically far

from any asymptotics (flucutations of the growth rate can be important)
Despite the agreement between the error growth in the simple model, and even in
some global circulation models, with simple first estimates, reliance on the leading
Lyapunov exponent, in most realistic situations, proves to be a considerable over-
simplification. By and large this is so because A| is defined as the long-term average
growth rate of a very small error. Often we are not primarily concerned with averages,
and, even when we are, we may be more interested in shorter-term behaviour. Also,
in practical situations the initial error is often not small.

‘In particular, both the amplitude of the initial error or of the chosen

tolerance matters!
When the initial error is not particularly small, as is often the case in operational

weather forecasting, A, may play a still smaller role. The situation is illustrated by

‘ In the presence of many characteristic times, the LE only accounts

for the fastest one, while often the slowest ones are of interest
The relevance of the Lyapunov exponent is even less certain in systems, such as

more realistic atmospheric models or the atmosphere itself, where different features
possess different characteristic time scales. In fact, it is not at all obvious what
the leading exponent for the atmosphere may be, or what the corresponding vector
mayv look like. To eain some insight, imagine a relatively realistic model that resolves



The finite-size Lyapunov exponent

We want an indicator able to characterize the error

growth rate at changing the scale (of the initial error

& and/or of our tolerance A)

5(t) ~ dpet
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=4 T(éo, A)
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A6, A) =
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Aurell, Boffetta, Crisanti, Paladin & AV PRL 1996 J.Phys. A 1997



Mathematical difficulties

When considering non-infinitesimal uncertainties we face the problem
of dependence on the norm, furthermore we are forced to work in
preasymptotic situations where establishing rigorous mathematical
results is rather difficult.

Physical solution

Abandoning the request of mathematical rigor, we can attempt an
operative (algorithmic) definition of an appropriate indicator such to
ensure that the usual LE is obtained in the proper limits, the idea is to
use norms suggested by physical intuition L !

0 = [l — ]

Note: another possible quantity is the e-entropy (Kolmogorov et al 1956), but
it is practically uncomputable & depends on the norm anyway



An algorithmic definition (I)

t(5,) first time for the error
| to grow from 9, to d,,,

i=1,..., NV “doubling” time experiments

| 1 Growth rate
| n: : %i(0n) = 7:(0r) ey scale 9§,
O e A T=2 7 ()= ?v:

T N Ti n
FSLE | A(6n) = (7(6n))t = %fn dt v = %T - {TE&j;}},j

For 8,->0 Benettin et al. Algorithm ==> ;in% A0) = A



An algorithmic definition (1I)

s X

! ! ! ! /|
i i i i e Essentially the same idea but
: : : : 7 : rescaling only when the last
i i i i % i threshold is reached
o 7 04
o A7 i Advantage:
b —~, When performing the rescaling
T T ; : at non-infinitesimal perturbations
i L i As in (I) we may exit from
S i the attractor
is, L1 |
D |

min | | ! ! |
5@ n@G) w® | w@ | ™"

Typically the two methods provide very close results



Application to predictability problems

e First Kind: when one assume to have a
perfect model but an error on the
knowledge of the initial condition

e Second Kind: when the exact dynamics
IS uncertain and the model is thus
known with some error (parameters,
unresolved degrees of freedom etc...)



FLSE for a system with 2 times scales

Coupled Lorenz ‘69 models with different time scales
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Predictability in a system with 2 times scales
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Example: parametrization of fast time scales

Approximated model

True model (parametrization of small/fast scales)
dx
E — f{J-:: y} x=Slow dx
— = fu(z, y(x))
dy ( ) y=fast dt
- = T.
dr glr,y
. . ,’J’ \\

For instance d_:: = X1 (X2 — Xpa1) — VX + F1 Z Yik)
Lorenz 1996 | | T
“true” -> d—‘;k = —cbyjr k(¥js26 — Yj—1.k) — CVYjk + X

. " dox APRAN
model "-> ? = _Ik—l(-xk—l — I.ﬁ:+l) — VX + F'\— G;; (I))
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Boffetta, Cencini, Celani, Lacorata & AV J. Phys. A 2000




FSLE and test of quality of the
paramefrnzahon

T=true 100 — — A
M=model ; ™ .
: A |G
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Predictability & FSLE in turbulence

Turbulence is characterized by the presence of many characteristic scales
and time scales

Basic ideas of classical Kolmogorov (1941) phenomenology

A

In(E(k))

<< ]

Slow T =L/U

energy input

-
In(k)




Predictability & FSLE in turbulence

Classical theory of predictability (Lorenz 1969, Leith 1971, Leith & Kraichnan 1972)

Basic Idea: Given a perturbation on the velocity field at scale r/2
scale r will be completely uncertain after a time T(r)= T  (r/L)?/3

Therefore an uncertainty at the smallest active scale ry will reach L in a time

Tp(’l“D, L) ~ T(TD) -+ T(ZTD) + ...+ T(L/Q) + T(L) ~ TL — L/U

v
v
Standard LE
1 R 1/2 ]. TL
A A ~, 1€ ————> Ty ~—~ 75
T(rp) 17, >\1 Re /
FSLE )
r ou A ou < OppuU
T(T) — (i,xu, e T(5u) — TL (U) I:> )‘(‘5“) ™~ { ((5’(1,)_2 eru <ou<U

This result holds also considering
Corrections to K4l



FSLE in shell models for 3d turbulence
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FSLE in Atmospheric Boundary layer

Predictability of atmospheric boundary-layer flows as a function
of scale GRL 2002
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Applications of FSLE to transport problems

The FSLE quantifies the growth rate between separating frajectories of a
dynamical system at changing the scale of separation, it is thus best suited
to charcterize trajectories separation in situations in which different physical
mechanisms are acting at different length scales

E.g. relative dispersion of tracers in fluid flows

iX dR

—— =v() =w(X(1),t)  —= =u(Xy(t)t) - w(Xs(t), 1) = dru

FSLE is particularly useful when coping with situations in which asymptotic
regimes cannot be established due to the presence of boundaries

or when d,u depends on R inducing different Rl ; R <rp
i ' Srpu~< RY3 rp<R<L
regimes for the evolution of R(t), e.g. turbulence . Y

Main advantage of FSLE fixing the scale may eliminate
Spurious effects appearing with the standard fixed time analysis



Fixed scale vs fixed time: a simple example
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Dispersion in non-asymptotic situations

Dispersions of tracers
In a disk with 4 point vortices
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Dispersion in non-asymptotic situations
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Easy to compute in experiments

Lateral adiabatic perspex sides

_Argon-lon Laser(750mW) Heating element

l | O N N H=6 cm

Light sheet D=THusem =Sy 1 Lower heat exchanger
! L=15cm ~~ |
".To the regulated power supply

! Video camera
= = ol

Personal Computer S-VHS Video Recorder

K

Experiment (PIV) & data analysis =
z
=

Boffetta, Cencini, Espa & Querzoli
EPL 1999 & Phys. Fluids 2000
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Scale dependent diffusion coefficient
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Relative dispersion in turbulence

dR
— = u(X(1),1) — u(Xa(t),1) = 6pu
Chaotic dispersion Richardson Dispersion

R(t) ~ R(0) exp(A1t) R? (t) ~ #3
AMR) = A ANR) ~ 6 2/3

Richardson 1926

D(R) ~ R*X\(R) ~ R*/3

5RUNU

Standard Dispersion

R*(t) ~ 2D,y st

)\(R) ~ Def'j'5_2




Fixed scale vs Fixed time in turbulence

In principle one may think that the FSLE A(3) is the same as

L d(R)) -~ d(mR(®))
(5) = 9 {Rg{t):i dt }‘(‘f’] -

A
{Rﬂ:ﬁ:ﬁg dt {ll‘l H{t}}:lnﬁ

BUT is not:

the main point is that A(3) depends only on the scale

while A(d) will depend also on R(0) this is particularly relevant to turbulence
where looking at fixed times R(t) is strongly ifluenced by R(0)




Relative dispersion in turbulence
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Usual Fixed time analysis
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FIG. 1. The evolution of {r(f)*)/7* vs t/7, for the initial separations ry
=1.27, ry=2.5%. ry=9.8 7. and ry=19.67. The straight line is proportional to
. Inset: {r(t)*)/et* for the same four initial separations starting from /7,
~15.

Biferale et al Phys. Fluids 2005

Fixed scale analysis
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FIG. 5. The mean exit time for the initial separations ry=1.2% (thin con-
tinuous line). rp=2.57 (long dashed line), ry=9.8 7 (short dashed line). and
ro=19.67 (dotted line) with p=1.25. The straight line is proportional to r*°.
In the inset we show Richardson’s constant, g, vs r/ 77 as given by (9) for the
same initial separations at R, =284. To evaluate the variability of g with the
Reynolds number, we also plot a curve (thick continuous line) for the initial
separation rp=1.27 at R, =183.



Detection of barriers to transport
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Forward/Backward FSLE as proxies for
stable/unstable manifold

Forward/Backward FSLE Forward/Backward FSLE

AN e - — P¥ & FELE (+; 0 dj, 200 K, 11/710/06, r=1
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E. Henrandez-Garcia et al Koh & Legras Chaos 2002



Macroscopic/Collective chaos

xn(t+1) = (1 — €) fa () + %Zﬁ:(n ),

Macroscopic observable

N

i=1

m(t) = %Zx;{r},

i=1

Natural expectation would have been m(t)=<m>+ O(N-/2)

0.45 -

™,
H“-\.

04 045 05

nas 06

m(t-1)

0es 0¥ 075 08

<- but there are cases in

which one observes a chaotic
behavior for the global observable
(Chate & Manneville 1990/2)

Working hypothesis:
Microscopic<-> collisions FAST
Macroscopic<-> Hydrodynamics SLOW



Macroscopic Chaos
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Conclusions

Though non-rigorous the FSLE demonstrated to be a useful
tool to characterize predictability & transport properties
in many practial problems

Main advantages: free from the asymptotics of infinite
time and infinitesimal perturbations which are unreachable
and, often, irrelevant to practical situations. Rather easy
to compute from data.

Being based on (fixed) scale instead of (fixed) time is best
suited to characterize those situations in which the
different mechanisms at play manifest at different scales

Word of care: necessity of physical input in the choice of
the norm
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