Interactive installation for collaborative creation of a language: Active negotiation of new linguistic conventions

William Schueller, Pierre-Yves Oudeyer

Kreyon Conference, Rome 08/09/2017

- Arbitrary choice (among equivalent options)
- Interest in agreeing with the group

Road side for driving

Greeting protocol

Electric plugs

Language

- Arbitrary choice (among equivalent options)
- Interest in agreeing with the group

- Potential conflicts
- Dynamics?

Road side for driving

Greeting protocol

Electric plugs

Language

- Arbitrary choice (among equivalent options)
- Interest in agreeing with the group

- Potential conflicts
- Dynamics?

Road side for driving

Greeting protocol

Language

- Arbitrary choice (among equivalent options)
- Interest in agreeing with the group

- Potential conflicts
- Dynamics?

Language

Competition between words for same meaning: femmina/donna, pa/pane, acitu/aceto, ...

- Multi-agent model
- No central control or information (2 individuals per interaction)

- Multi-agent model
- No central control or information (2 individuals per interaction)

Innovation: inventing new meaning-word associations

- Multi-agent model
- No central control or information (2 individuals per interaction)
- Simple rules of update after interaction
- Dealing with synonymy

Andrea Baronchelli and Vittorio Loreto

- Multi-agent model
- No central control or information (2 individuals per interaction)
- Simple rules of update after interaction
- Dealing with synonymy
- Explosion of complexity ! Before reaching consensus

Andrea Baronchelli and Vittorio Loreto

Average memory per agent Here, at peak, ~10 words per meaning

Number of different words for same meaning

Reaching consensus, % of successful interactions

Young children are really efficient learners, how do they do? How do they influence their learning process?

- Flow theory: choose challenges neither too complex, neither too simple.
- Intrinsic motivation, curiosity: controlling complexity growth
- Developmental paths (learn to move arms before walking, helps to keep balance; babble before talking, etc)

Young children are really efficient learners, how do they do? How do they influence their learning process?

- Flow theory: choose challenges neither too complex, neither too simple.
- Intrinsic motivation, curiosity: controlling complexity growth
- Developmental paths (learn to move arms before walking, helps to keep balance)
- Learning progress maximization
- Motor skills learning, language learning (babbling, syllables, simple words, sentences), ...
- What about "common social learning"? (Agreeing on new conventions)

Pierre-Yves Oudeyer

Robots learning basic motor and language skills : like children?

Interest models

What about "common social learning"? (Agreeing on new conventions)

Pierre-Yves Oudeyer

Robots learning basic motor and language skills : like children?

Interest models

Active control of complexity in the Naming Game?

- Several choices!

Active control of complexity in the Naming Game?

- Several choices!
 - Topic choice (before interaction)
 - Acceptance policy (after interaction): trust or not the other

Active Topic Choice

Stick to few meanings, later only explore others

CONTROLLING RATE OF INNOVATION (exploitation/exploration)

= 1 meaning, for example:

Agreement level

Active Topic Choice

- Stick to few meanings, later only explore others
- Several algorithms based on measures of confidence

Active control of complexity growth !

Acceptance policy: "Do I trust what he just said?"

- Stick to few meanings, later only explore others
- Several algorithms based on measures of confidence

Local complexity (memory) remains low!

Previous Naming Game experiments:

Issues:

- Recruiting users
- Getting/keeping them motivated
- If interacting together, should not abandon
- Haing relevant measures and results

Previous Naming Game experiments:

 A. Baronchelli and D. Centola: single meaning, no active topic choice possible, focused on social network properties

- **Previous Naming Game** experiments:
 - A. Baronchelli and D. Centola: single meaning, no active topic choice possible, focused on social network properties

Important issue: Gather participants, at the same time and keep them interested!

Network of potential neighbors: Consensus reached only when everyone interacts with everyone

MIT | Name Game

Wicked Player5

Player4 Player3

🚑 Killer

DPlayer

SuperP

Wicked p

Omone

Cdor

Previous Naming Game experiments:

- Talking Heads (Luc Steels) : too global, consensus not a goal per se, more about the artificial agents

People can interact with the agents and force their own words in the system. But:

- 1. Actual words already exist (square, red, circle, ...)
- 2. The experiment focused on the dynamics of the simulated agents' conventions

Previous Naming Game experiments:

- Ergo-robots: artistic display of the model

Free participants, but data is not relevant!

L'Expérience Ergo-Robots

Mikhail Gromov Mathématicien (prix Abel 2009)

David Lynch *Réalisateur, artiste*

Pierre-Yves Oudeyer A good supervisor

New experiment platform : an actual game!

- Focused on meaning choice and meaning exploration
- For the moment only one user at a + simulated agents
- Maximizing a score (probability of successful communication at the e

Italiano

Interaction #26 / 100

what do you want to talk about?

Using which word?

bumepi	faxeme
gugijo	hugane
genumo	onewew

Interact

Home

Measures:

- Bias innovation vs. reusing known meanings
- Rational choice?
- Persistence of own inventions (IKEA effect?)

http://kreyon.net/naming-game Or just outside, with the other experiments !

New experiment platform : an actual game!

Maybe by tomorrow, bonus types of experiments:

- Successfully communicating about meanings unravels new ones (motivation other than the score)
- Collective experiment, reusing agents who interacted with other people.

http://kreyon.net/naming-game Or just outside !

Thanks

Elisabetta Falivene

Théo Segonds

Usual strategies

Success Threshold

Minimal Counts

Hearer s choice

• Naive strategy converges slowly (after 1.000.000 interactions – not depicted here).

• Hearer's choice policy is more efficient for all active learning strategies.

• Last 5% of information are acquired slower when the speaker is choosing.

Vertical lines show full convergence time for each strategy. (M=W=N=20, averaged over 8 trials)

Hearer s choice

Convergence speed dependance on strategy parameters, for active 3 strategies and 2 active interaction scenarios. In all cases **hearer's choice scenario parameters are more robust** to change in value. Snapshots are taken for concurrent strategies spanning a relevant parameter interval, at different time steps (500, 1000, 2000, 5000, 10.000 interactions). Vertical lines show parameter values chosen for the comparisons in results section. (M=W=N=20, averaged over 8 trials)

Online platforms

- Amazon Mechanical Turk
- CrowdCurio

Python library

Important features:

- Modularity
- Open source
- Reproducible research
- Scalable on cluster
- Easy to read, modify and evolve (Supposed to be)

), "success cfo": (
	"success_type": "global"	
	"strat type": "naive category pone"	
	1	
	"voc ctq": (
	"voc_type": "category"	
In [4]:	db = template obj.get_db(==name) db.amveto_tb.Wkl) = batch = template_obj.get_batch(==name,batch_type=batch_type, db==db)	
In [5]:	cfg_list = []	
	for interact in interact 1:	
	for param in param 1:	
	for N in N L:	
	<pre>cfg_list += [{'xp_cfg':template_obj.xp_cfg_from_dict(n-name,</pre>	
	param-param,	
	sensor-sensor,	
	Neb),	
	'method':mtd_l+mtd_global_l,	
	'nb iter':nb iter)	
	for s in strategies] batch.add jobs(cfo list)	
In [6]:	db.get back from RAM() batch.auto finish queue(t=60,coeff=2)	
	db.move_to_RAM()	
	[2017 01 31 15:42:26]: Queue updated total: 0	
	execution time: 0 s	
	loos doue: e	
Ta [2]-	immediation in the second s	
THE DELT.		
	for interact in interact 1:	
	xp cfg l = []	
	for sensor in sensor L:	
	xp_crg_t += [temptate oo].xp_crg_trem_dict(n=name, strat=s,	
	interact=interact,	
	sensor-sensor, N=nbagent) for s in strategies)	
	for mt in mtd l:	
	graph = template obj.got graph(ntd=mt,xp_ctg_t=xp_ctg_t,nbiter=no_iter,p_t=param_t,db=db) graph.semilog = False	
	graph.show()	
	graph.show()	
	('interact_type': 'category_game')	
	oraph sitheo cat	
	10 million college the form has d min(101)	
	naive category pone (union had mine 01)	
	0.8naive calego v pege / funce- heat	
	ALL CONTRACTOR	
	M	
	0.6	
	11	
	, has the	
	02	
	ao 🧨	
	0 2000 4000 6000 8000 10000	
	Anteractions	
	10 graph_srtheo_cat	
	- naive_category_pone (uniform_hue d_min=0.1)	
	naive_category_pone (uniform_hue d_mm=0.01)	
	0.8 naive_category_pone (human_hue)	
	0.6	

Previous Naming Game experiments:

 Iterated Learning (K. Smith and S. Kirby): every user is a "generation", no need to sync users

What is used by the agent?

- Vocabulary
- Memory of past interactions

Idea: build an approximation of the 'average vocabulary' in the population using this memory, and compute probability of success

#Past interactions

Normalization: only retain maximum t interaction per meaning or word

(ignore past interactions older than t -> sliding window per meaning and per word)

Vocabulary approximation

Normalization: only retain maximum t =10 interactions per meaning or word

(ignore past interactions older than t -> sliding window per meaning and per word)

Consider 2 possible options: success when speaker, success when hearer, then average over meanings

Importance of time scale:

- If too small, too much confidence over new conventions (can be own), and forgetting lots of info
- If too high, evaluation of probability of success can be too small

But always, when over the time period all interactions agree with voc, SR = 1 Example with the previous example:

t = 9 -> SR = 0.457

t = 11 -> SR = 0.306

t= 100 -> SR = 0.0037

t < 9: impossible because 7+2=9, would have had to remove oldest interactions from memory

Here, numbers do not sum to 10, some information is still missing from the agent's point of view!

Multi-Armed Bandit

- Algorithms for exploit/explore
- Updating beliefs about reward, not using actual computation of the reward (very costly in our case)

Implemented:

Thompson Sampling, one "slot machine" per meaning + 1 for exploration. New machine (=newly explored meaning) takes current state of exploration machine

Abstract: Collective exploration through communication

Naming Game on a balanced tree (4 children per node), opening up adjacent possible only if condition of 'good communication', for example:

- At least 1 success
- At least k success
- Being certain about this meaning (estimated proba of success = 1)

N=100, M=W=10^4

